where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

Technical Discussions
Ed Ginzel
R & D, -
Materials Research Institute, Canada, Joined Nov 1998, 1229

Ed Ginzel

R & D, -
Materials Research Institute,
Joined Nov 1998
02:22 Dec-04-1999
What defines the TOFD Technique?

Mark Davis recently made a comment about the answer to the question on the number of probes used in TOFD. Like Mark, I too was a bit concerned by the answer provided that only one probe be needed for TOFD.
However, I thought more on this and came to no conclusion other than this leads to the point that a better definition of TOFD may be needed.

To use the acronym TOFD literally we could assume that the Time Of Flight Diffraction technique monitors the arrival times of diffracted sound wave pulses. In this case then any technique looking at arrival times off diffraction boundaries would satisfy the condition and would constitute a TOFD technique. This would include the simple two probe "delta" technique or the pulse-echo techniques popularised by Harumi's Tip Echo Working Group of the Japanese Society for NDT or the more familiar transmit-receive configurations we NORMALLY associate with TOFD.

Charlesworth and Temple (Engineering Applications of Ultrasonic Time-of-Flight Diffraction, Research Studies Press, England, 1989, page 4) state "The question then arises; if, in the final analysis pulse-echo inspection, while usually based on a search for specular reflections, is actually relying in some cases on diffracted waves for accurate sizing, would it not be advantageous to design a technique which is aimed directly at those diffracted waves and which deliberately avoids the specular reflections which may mask them?" They then go on to credit Maurice Silk with the invention of the technique (in 1979) which does this. Throughout their subsequent description they infer that two probes are used (one transmitting the other receiving) and that the probes are placed on either side of the defect to be sized. They also indicate that a "typical" signal in TOFD consists of a lateral wave (the first pulse from the wave travelling by the most direct route) followed by zero or more diffracted pulses from defects and then the backwall echo.

But these generalisations for the TOFD set-up break down as geometries other than simple butt welds on flat plate are investigated. Applications to T-K and Y node welds may not always have the probe pairs exactly opposite each other and techniques for thick sections usually require small angles with greater probe-centre-spacing with the effect of eliminating the detection of a lateral wave.

So what constitutes the TOFD technique as different from a pulse-echo technique looking at diffracted signals??

I have a difficult time trying to imagine how I would set up a single probe to provide me with a lateral wave and backwall signal BUT as I pointed out, the lateral wave will not be detected when testing some thick sections…so the presence of a lateral wave is not the defining method.

Some would advocate that TOFD is a sizing method using diffracted waves that are forward scattered only. The Delta Technique (described in the ASNT Handbook second edition vol 7 page 278) also uses forward scattered sound and is not considered TOFD. Also, the relative direction of some diffractions in a T, K or Y node are actually backscattered to the receiver on the other leg, yet this IS a common TOFD configuration.

Y.Aikawa (Ultrasonic Defect Sizing - Japanese Handbook- second edition. Japanese Society for NDT, 1996, page 54) used both a forward AND a backscattered technique and just called his sizing technique Tip Echo (not TOFD).

Are there any suggestions as to what is unique about a TOFD technique that would separate it from other items we also use for sizing and detection?


Product Spotlight

Ultrasonic Flaw Detector & Thickness Gauge: Smartor

SIUI’s newly launched Smartor is a combination of ultrasonic testing and ultrasonic thickness me
asurement. ●IP 66 ●Compact size: 198 (W)* 128 (H) *520 (D) mm ●0.9kg only with battery ●5.7" LCD with high resolution 640×480 pixels ●One-hand operation ●Multiple conventional UT functions ●Smart Test Wizard ●Weld Simulation

NovaScope 6000

The all-digital Novascope 6000 is a portable, ultra-high precision thickness gauge for high-speed
thickness measurement. Novascope 6000 has unmatched capabilities and unique features including: •Superior Resolution with high contrast, high-speed color RF display •High pulser voltage •Real-time video output •Increased internal/external data storage •Programmable SetUp features •Battery & AC Powered


Teledyne ICM’s CPSERIES has been designed with a view to revolutionizing the handling and perfor
mances of portable X-Ray sets. Despite having managed to halve the weight of similar portable X-Ray generators available on the market (while continuing to provide the same power output), the SITEX CPSERIES generators feature a shutter, a laser pointer, a beryllium window, an aluminum filter and two integrated diaphragms (customized sizes are available upon request). Without compromising the robustness and reliability for which ICM products are renowned, the small size and light weight of the SITEX CPSERIES will radically change the way that you perform your RT inspections. And you will see a positive impact in terms of both quality and return on investment (ROI).

Exertus Dual 120

The Exertus Dual 120 Projector has the ability to accept Iridium 192 sources or Selenium 75 source
s. This projector incorporates design and safety features that make it flexible, compact and lightweight. The Projector is lighter than most of its competitors. It incorporates an improved source channel, based on a new helicoidal design, which makes maintenance easier. The helicoidal design also allows smoother movement of the source assembly inside the device, making it easier for the operator and improving safety. The Projector also has a unique safety feature not found in competitive products. The source assembly locking mechanism is triggered by the source holder capsule at the front of the source assembly, thereby always assuring the operator that the source has returned to the safe position. The Exertus Dual 120 is ISO3999:2004 compliant.

We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
this is debug window