where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

1552 views
Technical Discussions
novice
novice
03:56 Apr-30-2008
shear wave test frequency and probe angle

How can I calculate the test frequency and probe angle to be used before preforming a shear wave examination?


    
 
 
Gowri Santhosh Palika
Gowri Santhosh Palika
03:36 May-01-2008
Re: shear wave test frequency and probe angle
----------- Start Original Message -----------
: How can I calculate the test frequency and probe angle to be used before preforming a shear wave examination?
------------ End Original Message ------------

Calculation of probe angle
It is depend on the thickness of job and weld geometry. There is a formula to get probe angle according to thickness ''Probe angle = 90 - T''. Here T is thickness of job. There is an another formula according to weld geometry is '' Probe angle = 90-®/2''. Here ®(tita) = groove angle. this formula is used when the job thickness is high and if therf is any necessity.
Probe frequency
It is depend on the type of job, job material, sensitivity requirements and thickness of job. There is no any formulas to calculate the probe frequency.


    
 
 
Michel Couture
NDT Inspector,
consultant, Canada, Joined Sep 2006, 831

Michel Couture

NDT Inspector,
consultant,
Canada,
Joined Sep 2006
831
00:13 May-01-2008
Re: shear wave test frequency and probe angle
----------- Start Original Message -----------
: : How can I calculate the test frequency and probe angle to be used before preforming a shear wave examination?
: Calculation of probe angle
: It is depend on the thickness of job and weld geometry. There is a formula to get probe angle according to thickness ''Probe angle = 90 - T''. Here T is thickness of job. There is an another formula according to weld geometry is '' Probe angle = 90-®/2''. Here ®(tita) = groove angle. this formula is used when the job thickness is high and if therf is any necessity.
: Probe frequency
: It is depend on the type of job, job material, sensitivity requirements and thickness of job. There is no any formulas to calculate the probe frequency.
------------ End Original Message ------------

Hi,

I totally agree, but would like to ad to that. In regards to weld inspection, very often, you don't have a choice in the frequency and probe angle. They are dictated by code. But has Gowri said, it depends on thickness and part geometry.

Secondly, to help you a little more, as a rule of thumb my buddies and I are using the following guidelines: Less than 6 inches (12 mm) we use a 5 MHz. Greater than 6 we use 2.25 MHz. The other rules of thumb we go by is if the art is greater than 3 inches (6 mm) in thickness we use a 1 inch (25 mm) diameter probe.

Hope this is helping

Michel




    
 
 

Product Spotlight

Conformable wedge transducer

The conformability is obtained with a flexible membrane filled with water between the transducer and
...
the inspected component. The coupling between the membrane and the component requires a small quantity of water or couplant. The conformable wedge combines the acoustic performance of immersion technique with good coupling and low attenuation.
>

IntraPhase Athena Phased Array System

The Athena Phased Array system, manufactured by WesDyne NDE Products & Technology, consists of a pha
...
sed array acquisition system and PC running IntraSpect software. A PC is used to perform acquisition, analysis and storage of the data. System hardware is capable of operating up to four data sets with any combination of phased array or conventional UT probes. NOW AVAILABLE IN 64-64 CONFIGURATION.
>

TOPAZ® 64: Fully Integrated Portable 64 Channel PAUT Instrument with FMC & TFM

Introducing TOPAZ64, the industry’s most intelligent fully integrated, portable 64-channel phased
...
array ultrasound (UT) instrument. TOPAZ64 combines code-compliant phased array UT with the industry’s most advanced full matrix capture (FMC) and total focusing method (TFM) capabilities. Featuring the highest acquisition frequency in its class, high resolution FMC and a 12” multi-touchscreen, users can easily visualize even the smallest flaws. TOPAZ64 can generate a bipolar pulse that provides more acoustic energy versus previous models for punching through thick components. The result is a portable tool that delivers increased inspection coverage, more accurate signals, and the ability to handle all UT inspections in one package. TOPAZ64 is ideal for challenging applications in transportation, oil and gas, manufacturing and power generation.
>

Research and Applications Development For NDT

The Research and Applications Development (RAD) group is a newly formed team within Acuren dedicat
...
ed to tackling challenging inspection problems. Our focus is the development of novel, field deployable, advanced inspection techniques for use in cases where standard NDT methods are ineffective. We don't wait for new innovations, we engineer them. From concept to commissioning.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window