where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

EXTENDE
EXTENDE, optimize your NDT inspections projects thanks to simulation.

1327 views
Technical Discussions
Charles Yang
Charles Yang
08:54 Apr-14-2000
Laser-Ultrasonic NDT

I am interested in Laser based ultrasonic Testing in Taiwan. Experimental facilities are under construction. But I still felt lack of informations about the present applications in industry, e.g. aerospace/aircraft industry. So, I need more useful informations or comments about where/how to get that.

Thanks to anyone with informations/comments.

Charles Yang
870632@itri.org.tw





    
 
 
J. Mark Davis
Teacher, And Consultant
University of Ultrasonics, Birmingham, Alabama, USA, Joined Mar 2000, 85

J. Mark Davis

Teacher, And Consultant
University of Ultrasonics, Birmingham, Alabama,
USA,
Joined Mar 2000
85
03:02 Apr-14-2000
Re: Laser-Ultrasonic NDT



    
 
 
Chris Coughlin
Chris Coughlin
04:55 Apr-14-2000
Re: Laser-Ultrasonic NDT
Hi Charles,

The Nondestructive Testing Information Analysis Center (NTIAC) has published a state of the art review of laser ultrasonic NDT. You can find more information by visting the NTIAC page at http://www.ntiac.com/pubs/tech.html or sending e-mail to info@ntiac.com.

Hope this helps,
Chris

: I am interested in Laser based ultrasonic Testing in Taiwan. Experimental facilities are under construction. But I still felt lack of informations about the present applications in industry, e.g. aerospace/aircraft industry. So, I need more useful informations or comments about where/how to get that.

: Thanks to anyone with informations/comments.

: Charles Yang
: 870632@itri.org.tw





    
 
 
MATTHEW GODFREY
MATTHEW GODFREY
03:34 Apr-18-2000
Re: Laser-Ultrasonic NDT
I HAVE RECENTLY BEEN LOOKING AT A WAY OF TESTING LASER WELDS, I WORK FOR GENERAL MOTORS AND I AM CURRENTLY DEVELOPING A SYSTEM WITH KRAUTKRAMER IN COLONGE. I MAY HAVE SOME INFORMATION THAT IS OF USE TO YOU. AND VICE VERSA, IF YOU HAVE ANY INFORMATION THAT MAY HELP ME. PLEASE CONTACT ME AT THE ABOVE E ADDRESS.


    
 
 
Udo Schlengermann
Consultant, -
Standards Consulting, Germany, Joined Nov 1998, 174

Udo Schlengermann

Consultant, -
Standards Consulting,
Germany,
Joined Nov 1998
174
04:05 Apr-18-2000
Re: Laser-Ultrasonic NDT



    
 
 
Rainer Meier
R & D
retired from intelligeNDT Systems & Services, Germany, Joined Nov 1998, 15

Rainer Meier

R & D
retired from intelligeNDT Systems & Services,
Germany,
Joined Nov 1998
15
05:19 Apr-18-2000
Re: Laser-Ultrasonic NDT
: I HAVE RECENTLY BEEN LOOKING AT A WAY OF TESTING LASER
WELDS, I WORK FOR GENERAL MOTORS AND I AM CURRENTLY DEVELOPING
A SYSTEM WITH KRAUTKRAMER IN COLONGE. I MAY HAVE SOME
INFORMATION THAT IS OF USE TO YOU. AND VICE VERSA, IF
YOU HAVE ANY INFORMATION THAT MAY HELP ME. PLEASE
CONTACT ME AT THE ABOVE E ADDRESS.

Dear Mr. Goodfrey,

we develloped a UT-technique for the inspection of laserwelded
tube sleeves. The tubes and sleeves were made from inconel, which
shows a very coarse and directed grain structure in the weld zone.
(I suppose, you want to inspect aluminum welds, where the coarse
grain structure is possibly a not so big problem).

Two things were very important: The use of focused UT-beam (beam
width 0.3 mm) to have a sufficient resolution at a weld with of
appr. 1 mm in the keyhole area and a broad band transducer with
a center frequency of 15 MHz. The UT inspection is done in 0°
immersion technique.

As the result of our devellopment, we are able to determine the
weld width and to inspect the weld for flaws. The condition of the
weld crone is a sensitive parameter: it must be smooth enough.

I don't know your inspection problem in detail, but I suppose it's
not so critical than ours (which was for a German Nuclear
Power Plant). So I think there are solutions without grounding the
weld crown. It would be interesting, to know your inspection
requirements.

Rainer Meier
Siemens NDT
Freyeslebenstrasse 1
D-91058 Erlangen
Germany

Phone +49 9131 183881
Fax +49 9131 187547
mail Rainer.Meier@erls11@siemens.de


    
 
 
Wolfgang Bisle
Wolfgang Bisle
06:11 Apr-18-2000
Re: Laser-Ultrasonic NDT
I guess you need real information. Not just academic ones. This is mostly the problem if you discuss about LaserUS. Lots of people don't really know what they talk about. It was the same for me when we started - we where lots too enthusiastic concerning this theme. But we start now our own business in this subject.
So be carefull: The technique is still too slow for industrial applications (pulse rep. rate still max 100Hz), still not scalable (multichannel is far from being availoable), sensitivity is poor.

There are some ways out, I think the most innovative approach is done by GE and Lockheed (look at the QNDE-Proceedings from the 1999 Montreal conference, e.g. Peter Lorraines Presentations) But for several reasons their swystem will not be commercialized in near future.

The only industrial setup I know is that from Dassault Aviation & Aerospatiale Matra in the Biaritz plant (UltraOptec LUIS 72) which is working quiet sufficient, but rep-rate and electronics might be improved to fulfil real tough industrial specifications - the system is already some years old.
We have also visited the McClellan AFB, but this installation seems totally overpowered for commercial aeronautical applications, much too expensive and the cost/efficiency ratio is much too bad. We brought some test specimens with us and got some results with the LUIS 747 but simple aircoupled US showed better results (We visited after the AFB the company QMI and they tested the same specimen for us, this was one reason for us to invest in aircoupled US first) The LUIS 747 has the same slow speed and the lack of sensitivity as the Biaritz LUIS 72.

In general you should think of what you need and calculate what would be the best solution. Still there are different fields of application: FRP's and Metalls.
It is not easy to combine a system for both as the optical and thermal behaviour is different. For CFRP a CO2 laser is still the usual approach for excitation but they are too slow and have not an optimized wavelength (and you can not send the light through a fibre). There are several options to improve this, which might also increase the Rep-Rate; but this is something to invest improvement work (e.g. Holmium-, Erbium-Laser, known from medical use, or OPO's pumped by XxYAG solid state lasers ore else to get into the range of 3...3.5µm.).
On the metallic side NdYAG seems to be a sufficient solution. But who knows.... maybe somethinge better is somewhere around the corner.
Even on the receiver side improvement is necessary. CFPI's are the current optimum solution, but have less potential for improvements necessary for instance for multichannel operation. Here might be the photorefractive crystal a future solution, as it is possible to use this with CCD arrays as a multichannnel sensor. But again - this needs some research work. Another way might be the PhotoEMF-solution from Lasson Ind.
Finally the electronics must be fitted for advanced signalprocessing to extract the necessary informations out of some LaserUS-typical noise signals.
The commercial available system here still have some obstacles left.

So you see it is not easy to decide. The most important thing to do is to improve the LaserUS-Concept is to make it fit for the competition with standard US. People researching in LaserUS often tell LaserUS is faster and more cost efficient. That's really not true. None of the few LaserUS-Systems in the industry have ever reached nearly the speed of Multichannel Squirtersystems. The only advantage might be the easier teach-in on 2-dim curved parts, if you have to test only a few different small parts per day.
And there is no couplant contaminating your surface.
But with current phased array techniques and multichannel approaches to conventional US as well as for air coupled US LaserUS has to make a long distance in the race to become competitor to the traditional improved US.
PLease see this from the viewpoint of an engeneer who had to decide for the QC of a production line and for the QC of future structural designs beeing produced in a cost optimized factory, where each step can decide about your commercial success. In millitary applications (Lockheed, McClellan AFB etc.) things look different - cost is not that factor and production rate is not one aircraft per day etc.
So their viewpoint is different. But in terms of economic aspects LaserUS is still not a competitor.
If you look at the selling of a company like UltraOptec compared for instance to Krautkrämer you will realize this.
On the other hand there is a future and this should be taken into account - invest some money, do some research and improvemente on the right things - and several of the disadvantages might be vanishing and hopefully LaserUS becomes the best alternative, a potential is given. Without a massive interest of the industry LaserUS will stay as it is, a playground of some scientists but with no chance for real industrialization.
I think even the universities and institutes should think of what is necessary to give this technique a chance instead of developing academic ideas with no current value for a quick industrialization.
Wolfgang Bisle, DaimlerChrysler Aerospace Airbus GmbH


    
 
 

Product Spotlight

NozzleScan: Radial nozzle scanner with probe skew

NozzleScan is a versatile manual scanning solution developed for the inspection of nozzle welds in
...
both set-through and set-on configurations. Available in both two-axis and three-axis instrument configurations and adaptable to cover a wide range of 90-degree nozzle sizes, from 3" upwards, on ferritic and austenitic materials.The transducer skew axis can also be adjusted, encoded and locked.
>

NDT.net launches mobile-friendly design

NDT.net has revamped its website providing a mobile-friendly design.The front page received a comp
...
letely new design and all other sections are now reacting responsively on mobile devices. This has been a major step to make our website more user- friendly.
>

Lyft™: Pulsed Eddy Current Reinvented

PEC Reinvented—CUI Programs Redefined Corrosion under insulation (CUI) is possibly the greatest u
...
nresolved asset integrity problem in the industry. Current methods for measuring wall thickness with liftoff, without removing insulation, all have severe limitations. Eddyfi introduces Lyft — a reinvented, high-performance pulsed eddy current (PEC) solution. The patent- pending system features a state-of-the-art portable instrument, real- time C-scan imaging, fast data acquisition with grid-mapping and dynamic scanning modes, and flexibility with long cables. It can also scan through thick metal and insulation, as well as aluminum, stainless steel, and galvanized steel weather jackets. Who else but Eddyfi to reinvent an eddy current technique and redefine CUI programs. Got Lyft?
>

HD-CR 35 NDT Computed Radiography System

Portable high-resolution CR scanner for all radiography applications - weld testing, profile images
...
and aerospace. No matter what type of radiographic testing you are performing, the unique TreFoc Technology of the HD-CR 35 NDT imaging plate scanner always guarantees the highest image quality.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window
s