where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

TWI
TWI is a world leading research and technology organisation established in 1946. From bases in the UK, USA, China, Malaysia, Middle East, India a ...
1113 views
Career Discussions
Jaeseok Park
Jaeseok Park
08:41 Jan-28-2004
about creeping wave and mode conversion

hi there,
Can anybody inform me about the theoretical background of creeping wave and mode conversion? please help me... T.T


 
 Reply 
 
Ed Ginzel
R & D, -
Materials Research Institute, Canada, Joined Nov 1998, 1274

Ed Ginzel

R & D, -
Materials Research Institute,
Canada,
Joined Nov 1998
1274
03:50 Jan-29-2004
Re: about creeping wave and mode conversion
Mr. Park:
The best work on the description of the so-called creeping wave is a paper entitled
"On the nature of the so-called subsurface Longitudinal wave and/or the surface Longitudinal Creeping wave" by K.J Langenberg, P. Fellinger, and R. Marklein, Research in Nondestructive Evaluation, Springer - Verlag, 1990 pp 61-81.
Regards
Ed


----------- Start Original Message -----------
: hi there,
: Can anybody inform me about the theoretical background of creeping wave and mode conversion? please help me... T.T
------------ End Original Message ------------




 
 Reply 
 
Hermann Wüstenberg
R & D
BAM Berlin, Germany, Joined Nov 1998, 26

Hermann Wüstenberg

R & D
BAM Berlin,
Germany,
Joined Nov 1998
26
03:06 Jan-29-2004
Re: about creeping wave and mode conversion
----------- Start Original Message -----------
: hi there,
: Can anybody inform me about the theoretical background of creeping wave and mode conversion? please help me... T.T
------------ End Original Message ------------
The name „creeping waves“ has been introduced around 1975 (if I am correctly informed at first in Germany) for a phenomenon observed at angle beam probes with a wedge angle close to the angle of total reflection of the longitudinal wave in steel (e.g. with a perspex wedge angle around 27°). The waves then generated in steel do have a complex structure. They do propagate into the halfspace as shear waves with a refraction angle around 33,2° and are linked to a remaining long-wave trace at the surface – a kind of longitudinal headwave, also known as lateral wave in the TOFD applications or as “creeping waves”, which is strongly attenuated with increasing distance from the probe due to the energy loss by the 33,2°-shear waves constantly irradiated from the surface into the half space. The term “creeping wave” is somehow misleading. It has been applied a lot earlier than 1975 for waves surrounding cylindrical reflectors hit by shear waves and producing small indications in A-scans of such reflectors which may be used for the determination of the reflector diameter. But once introduced into practical application, it has been impossible to correct this ambiguity.
Nowadays, the term “creeping wave” is linked to some important applications e.g. on stainless steel welds. The fast distance decay forces to use transmitter receiver probes. The family of transmitter-receiver probes for inclined longitudinal waves (TRL or SEL probes) is among others used with refraction angles around 70° (for the L-wave in steel!) eg. for the detection of sub-cladding cracks or with a wedge angle around 27° (producing more or less pure “creeping waves” ) for surface and near surface cracks. Since the always excited 33,2°-shear-wave may convert back into a longitudinal wave when hitting the opposite surface of a plate, one may use also this L-wave (which propagates nearly in parallel to the opposite surface) to detect cracks or other defects close to the opposite surface. The use of different interactions using different waves modes at one single probe is a typical multimode application producing quite complex patterns of A-scans which can only be evaluated with some success based on the context information of images like TD-, B-, or C-scans, that means it requires an automatic inspection.

Hermann Wuestenberg




 
 Reply 
 

Product Spotlight

Surf-X® Array Probe

Introducing the Surf-X family of flexible Eddy Current Array (ECA) probes. Featuring unique multiple
...
coil sets and proprietary X-PROBE technology, Surf-X array probes can quickly and accurately handle a range of inspection applications, from inspecting corrosion or cracking in pipes, pressure vessels, or tanks, to assessing and sizing cracks in raised welds and friction stir welds.
>

Navic - Steerable Modular Automated Scanner

The Navic is a modular, motorized, steerable scanner designed to carry multiple attachments used
...
in various scanning and inspection applications. The Navic is capable of weld scanning (girth welds and long seam welds), automated corrosion mapping, and tank scanning.
>

ISAFE3 Intrinsically Safe Sensor System

ISAFE3 intrinsically safe sensor system of Vallen Systeme is especially targeted at the petrochemica
...
l - as well as oil and gas transportation industry. The sensor system is designed for permanent monitoring or periodic inspection tasks. Sensors are available for different AE-frequency ranges optimized for corrosion and fatigue crack detection and other applications. The ISAFE 3 sensor system consists of an AE-sensor (model ISAS3) certified according to ATEX/IEC for installation in zone 0, gas group IIC, IP68, 20 to +60 °C, and a signal isolator (model SISO3) certified for installation in zone 2. An ISAS3 sensor can be mounted in atmosphere or submerged, e.g. in water or crude oil. It is supported by mounting tools for temporary (magnets) or permanent (welded) installation. ISAFE3 supports automatic sensor coupling test and can be used with any AE signal processor supporting 28V supply at 90 mA peak, e.g. Vallen Systeme ASIP-2/A.
>

NEW! The PragmaPro Instrument Platform

The PragmaPro is based on a modular cartridge technology and supports various NDT instrument modal
...
ities such as UT, PAUT, ECT and many more. This new platform is based on a machined, powder-coated aluminum frame for shock-proofness, best sealing qualities and maximum heat dissipation. This is practical to extend the outdoor temperature range and/or to extend the power injected in the transducers. The PragmaPro is aiming at a very wide range of applications, such as weld scanning, corrosion mapping and composite testing.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window