where expertise comes together - since 1996

Web's Largest Portal of Nondestructive Testing (NDT)
Open Access Database (Conference Proceedings, Articles, News), Exhibition, Forum, Network

All Forum Boards
Technical Discussions >
To all: Is there any disadvantage for composite transducers?
Career Discussions
Job Offers
Job Seeks
Classified Ads
About NDT.net
Articles & News

VOGT Ultrasonics GmbH
non-destructive testing, services, training, ultrasonic systems, immersion and squirter inspection systems, PROline, digital radiology

861 views
03:29 Sep-21-1996

Rolf D.

Director, Editor, Publisher, Internet, PHP MySQL
NDT.net,
Germany,
Joined Nov 1998
598
To all: Is there any disadvantage for composite transducers?

  • The great advantages which were pointed out in articles from G. Fleury [1]
    and G. Splitt [2] lead to the conclusion,
    to use only composite transducers from now on, is this right?

  • In particularly, is there any figure of the following
    table which result also in disadvantages.

    comparison: lead zirco-titanate PZT ---> 1-3 composite
    acoustical impedance (Mray): 30-32 ---> 8-12
    coupling coefficient: 0.45 ---> 0.5-0.7
    dielectrical constant: 250-2000 ---> 200-600
    density (g/cm3): 7.8 ---> 3.5-4

  • Is that design available for any frequencies,
    and is this design beneficially for any frequencies?

  • Is that kind of transducer more expensive,
    and how much does it share with the total transducer market?

    That are of course a lot of questions.
    I would appreciate if other experts will give their comments as well,
    however let us first wait for Mr. Fleury's answer.

    Thanks

    Rolf D.


    Ref 1:
    IMPROVEMENTS OF ULTRASONIC INSPECTIONS THROUGH THE USE OF
    PIEZO-COMPOSITE TRANSDUCERS
    ]
    Ref 2:
    Transducers with Piezo Composite - a milestone for Ultrasonic Testing




  •  
    08:51 Sep-24-1996
    Bill Grandia
    Re: To all: Is there any disadvantage for composite transducers? The composite transducer has both advantages and disadvantages. The positive aspects were outlined by G. Fleury and G. Splitt. There are some applications were this extremely nice device is less desirable. To realize what the disadvantages are, requires to analyze the differences in characteristics as compared to conventional transducers.
    The name composite transducers means that a solid piezo-electric element has been modified. There a basically two ways to construct a composite element.

    a) A solid piezo disk can be broken in small pieces or granules, whereby the spaces between the granules are filled with epoxy. A preferred filler seems to be Spurr epoxy, which in liquid state has a very low viscosity (like water).
    A focused composite element can simply be produced by inserting a solid polarized element between concave and convex shaped press-mold halves, hereby submerging the entire mold in liquid epoxy. This method allows the epoxy to flow into the crevices and prevents air from entering into the crushed structure. After the epoxy is cured, the dish-shaped element can be taken out of the mold. Of course, the electrodes need to be restored. There is no need to re-polarize the element, since the granules are staying in their original alignment.
    This construction is less popular, since the fill factor for the element is practically fixed. The only feature is that the radial to the thickness mode becomes uncoupled. By this, the effectiveness of the thickness mode vibration is enhanced. There is virtually no reduction in acoustic impedance and dielectric constant. The bandwidth of the element is becomes increased. When a high "Q" element such as PZT5A is used, the signal response of the crushed version more or less behaves like a lead metaniobate element, except that the sensitivity is stronger.

    b) A better method is the dicing approach, whereby the element is cut into small pieces and has been described in detail by G. Fleury and G.Splitt.
    We need to discuss the disadvantages.

    1: The composite element is not desired when a high "Q: transducer is necessary. A "high "Q" means that the transducer has a narrow bandwidth and therefor produces a large amount of ringing. The penetration power of a high Q transducer is strong. When highly attenuative materials are to be inspected, a strong signal is required. Sometimes this can be enhanced by applying a toneburst signal with a frequency equal to the series resonance frequency of the element. At this resonant condition, the electrical impedance of the device becomes minim and therefor the generated sound pressure into the material is strongly enhanced. This is not possible with diced elements. From a receiving standpoint, a strong signal can also be obtained in the narrow band mode. The narrow band application is very popular for the through transmission technique.
    2: The composite transducer is less suited as a direct contact transducer for the inspection of steel or ceramics, especially when the transducer needs to be wear resistant.
    The lowered acoustical impedance is not impedance matched to the ceramic wearplate or the steel surface.
    3: Another characteristic of composite transducers it that the capacitance of the element reduces with the aspect ratio of the total area of the diced elements and the filler epoxy. When this ratio becomes high while trying to make a low acoustic impedance (like good matching to water), the electrical charge produced on the diced element from a reflected signal becomes small. When a long coaxial cable is connected to the transducer, the signal amplitude becomes small. The cable acts now like a parallel capacitance, hereby absorbing the signal to an appreciable extend. Typically, the capacitance of a coaxial cable is 31 pFd / foot. A 10 foot cable therefor is 310 pFd. If the element capacitance is around 300 pFd, the signal amplitude drops to half the value. Of coarse, the can be overcome by using an high input impedance low noise pre-amplifier located very close bythe transducer. It is possible to use such pre-amplifiers in the pulse echo mode by inserting an isolation circuit to protect the amplifier from the large damaging transmitting pulse. The use of such an amplifier greatly enhances the performance of the composite transducer by preserving the high resolution wave shape.
    This sumps up the few disadvantages of the composite transducers.

    Bill Grandia


     
    00:44 Sep-28-1996
    Fleury Gerard
    Re: To all: Is there any disadvantage for composite transducers? s acoustically loaded by a low impedance
    medium even when the material or the piece to be inspected has a high impedance : for instance in the
    case of immersion probes and probes incorporating (or associated with) a shoe, a wedge or a delay line.
    made of polymer materials.In these numerous cases
    transducers with an active part made of 1-3 piezocomposite material can provide better sensitivity
    in a wider freqency band than transducers produced with other presently known technologies. Such transducers can bring an important improvement in inspection quality ( see for instance results given in workshop articles from G.Splitt and G.Fleury ) in applications where signal to noise ratio and bandwidth
    are critical parameters .

    Of course composite transducers have some limitations and yet Bill Grandia noticed some of them .
    The case of applications where the transducer is
    used in direct and intimate contact with a high impedance material is one of them . Due to their relatively low acoustic impedance, piezocomposite materials may be not appropriate to build such transducers.

    The case of applications" requiring High Q transducers" should be discussed into more details :

    Is the High Q required to create a narrow band or
    is it only a way to design an efficient transducer (at
    a given frequency) and /or to transmit high intensity
    ultrasound ?

    If the application imposes a narrow band system ,this narrow band can be obtained by different ways :

    . Narrow band transducer is one way to do it and then
    composite technology may be not appropriate to get
    it .However in such case the frequency will be fixed
    by transducer design,dependant from manufacturing tolerances and may be will vary with temperature or
    transmitted power ( which creates heating effects
    inside the transducer)

    . Narrow band of the system can be obtained by electronic filtering associated with a medium or wide band transducer and then the frequencycan be more easily choosen and controlled.

    If the application requires an efficient transducer,then
    composite transducer can be extremely useful with a high transmit/receive efficiency quite close to what can produce narrow band transducers and again with the possibility to adjust and/or control the frequency.

    Finally, if the application requires power generation
    then specially designed composite transducers can
    produce very high level of intensities in CW, high duty
    cycle burst or impulse mode .

    Are composite transducers more expensive than conventional ones ? Such question requires special
    attention about the basis of comparisons :

    .Is the comparison to be done on standardised probes manufactured with the same general specifications excepted acoustical properties? Then, as far as I know, differences in prices are quite low between composite transducers and conventional transducers and I am not able to say if the difference is due to the composite aspect or is due to other aspects as for instance general quality or associated services .

    .On special transducers dedicated to special applications the analysis is still more difficult to do
    but again as far as I know differences in price are not important in comparison with the gain on global functional performances.

    Limitations in frequency :

    Piezocomposite technology based on 1-3 active
    materials is physically limited in frequency due to the
    microstructure of materials .As far as I know the upper
    limit is a center frequency of 15 Mhz for standard transducers and 18 Mhz for special fabrications .

    There are many other things ( array applications ,low frequency transducers,aspherical focusing,high temperature, ...) to discuss about composite transducers but excepted the above comments I do not see many restrictions for the use of
    such transducers in NDE applications.Of course these
    transducers are presently a small part of the total market of transducers but they bring so much advantages in many applications that I am sure they
    will play a much more important role in the future .

    Gerard Fleury




     
    06:53 Oct-01-1996

    Gerhard Splitt

    R & D, -
    Private,
    Germany,
    Joined Nov 1998
    38
    Re: To all: Is there any disadvantage for composite transducers?
    Sorry for the delayed answer which is due to too much trouble last week.

    The comments of Bill Grandia have shown that piezocomposite transducers are
    suitable for nearly all probes except for hardfaced probes, which will be coupled
    directly to steel. But even there could be some advantage depending on crystal
    diameter, frequency and wear plate material. A normal PZT transducer will produce
    radial ringing which can result in spurious echos in the hardface probe. With a
    piezocomposite transducer the radial coupling is reduced to a small amount making
    the hardface probe more quiet.

    Of course there are some other restrictions for using piezocomposite transducers for
    all types of probes.

    1. The material is more costly, therefore it will not be used in cheap probes.

    2. It is difficult and extremely costly to fabricate high frequency transducers. To avoid
    additional ringing the periodicity of the 1-3 piezocomposite matrix should be smaller
    than halve the wavelength of shear waves in the epoxy matrix for the highest
    frequency within the pass band of the probe. For 15 MHz probe e.g. this results in
    very small ceramic posts of 0.04 mm edge length and very small separating epoxy
    lines of 0.015 mm (for 20 MHz upper pass band and shear wave velocity of 1100
    m/s)!

    3. Piezocomposite material is not suitable for temperatures above 130 degree C
    approx.

    Gerhard Splitt





     


    © NDT.net - The Web's Largest Portal of Nondestructive Testing (NDT) ISSN 1435-4934

    Open Access Database, |Conference Proceedings| |Articles| |News| |Exhibition| |Forum| |Professional Network|