where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -
216 views
Technical Discussions
Martin S.
Martin S.
15:07 Jan-13-2009
How to distinguish guided modes and other waves in/of structures

Hello everybody!

I'm currently working on my diploma thesis, an aspect of which is NDE of sandwich structures by means of UT. We want to use guided (lamb-like) waves to accomplish this task. My main question is what wave modes do exist in a sandwich structure. Doing literature research on this question I found different answers depending on the sandwich type and the model (i.e. first order shear plate theory or higher order sandwich theory) being used. I also know that modes can exist both in the components (facings, core) and in the sandwich plate as a whole.

So far so good. What actually confuses me now and needs to be cleared up, is that I cannot clearly distinguish between vibrations of plates (not neccessarily sandwich, but also monolithic plates) under certain boundary conditions and guided modes in plates. For that you know what I mean, I've taken this from wikipedia:

"Another question is what completely different acoustical behaviors and wave modes may be present in the real geometry of the part. For example, a cylindrical pipe has flexural modes associated with bodily movement of the whole pipe, quite different from the Lamb-like flexural mode of the pipe wall. For example, a cylindrical pipe has flexural modes associated with bodily movement of the whole pipe, quite different from the Lamb-like flexural mode of the pipe wall."

For the pipe, this distinction is quite clear. We have modes in the walls and we have modes of the whole pipe (cylinder).
But what happens if we consider a plate by analogy? Starting with the pipe again: If we have a very long pipe, we can have both propagating and standing waves of the pipe (bodily movement). Independently from that, we can have guided waves in the wall of the pipe. Now consider a plate (or better: a thin beam) by analogy. Both wave phenomena become the same then, don't they? Or where is the difference? Which of the modes are guided modes, suitable for UT?

If you can help, please reply. It's very important to me. Thank you!

    
 
 Reply 
 

Product Spotlight

IRIS 9000Plus - Introducing the next generation of heat exchanger inspection.

Representing the seventh generation of the IRIS system, the IRIS 9000 Plus has nearly 200 years of c
...
ombined field inspection experience incorporated in its design. This experience combined with a strong commitment to quality and a history of innovation has made Iris Inspection Services® the undisputed leader in IRIS technology.
>

Immersion systems

ScanMaster ultrasonic immersion systems are designed for high throughput, multi shift operation in a
...
n industrial or lab environment. These fully integrated systems provide various scanning configurations and incorporate conventional and phased arrays technologies to support diverse applications, such as inspection of disks, bars, shafts, billets and plates. All of ScanMaster immersion systems are built from high accuracy scanning frames allowing for scanning of complex parts and include a multi-channel ultrasonic instrument with exceptional performance. The systems are approved by all major manufacturers for C-scan inspection of jet engine forged discs. Together with a comprehensive set of software modules these flexible series of systems provide the customer with the best price performance solutions.
>

CIVA 2017 UT Module

CIVA NDE Simulation Software is the world leader of NDT Simulation. The UT simulation Module incl
...
udes: - "Beam computation": Beam propagation simulation - "Inspection Simulation": Beam interaction with flaws or specimens The user can simulate a whole inspection process (pulse echo, tandem or TOFD) with a wide range of probes (conventional, Phased- arrays or EMAT), components, and flaws.
>

FMC/TFM

Next generation for Phased Array UT is here now with FMC/TFM! Have higher resolution imaging, impr
...
oved signal to noise ratio, characterize, size and analyze defects better with access to several wave mode views and save raw FMC data for higher quality analysis.  Some of the benefits are:
  • Beautiful Image! Easier to understand what you're looking at
  • Completely focused in entire image or volume
  • Much easier to define setups before inspection
  • Easier to decipher geometry echoes from real defects
  • Oriented defects (e.g. cracks) are imaged better
  • See image from different wave modes from one FMC inspection
  • FMC data can be reprocessed/analyzed without going back to the field
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window