where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

668 views
Technical Discussions
jamie
jamie
14:29 Mar-22-2009
nuclear physics decay question

I am trying to find out why does
80 m Bromine
35

decay both beta negative and positron??

    
 
 
Ed Ginzel
R & D, -
Materials Research Institute, Canada, Joined Nov 1998, 1219

Ed Ginzel

R & D, -
Materials Research Institute,
Canada,
Joined Nov 1998
1219
01:51 Mar-23-2009
Re: nuclear physics decay question
In Reply to jamie at 14:29 Mar-22-2009 (Opening).

Jamie…radio-chemistry, an interesting topic and what got me interested in NDT 35 years ago. But the isotope you refer to is not one usually associated with NDT!

Some background for those not familiar;
Bromine has 2 stable isotopes, Br79 and Br81.
Br80 is one of several unstable isotopes of Bromine.
Also, Bromine 80 is a nuclear isomer. A nuclear isomer has the same nuclear mass and same atomic number but different radioactive properties. In this case the isomers are 35Br80 and 35Br80m (where 35 is the Z number or atomic number and 80 the atomic mass and 35 would be a subscript and 80 and the letter m are superscript).

Wikipedia describes nuclear isomers as “…a metastable state of an atomic nucleus caused by the excitation of one or more of its nucleons. A nuclear isomer occupies a higher energy state than the corresponding non-excited nucleus, called the ground state. Eventually, the nuclear isomer will release the extra energy and decay into the ground state,…”,.

In my old school text “Radio and Nuclear Chemistry” by Friedlander Kennedy and Miller (Wiley 1964) they note that the unstable isotope of Br80 decays by several decay methods including Beta negative with associated gamma emission, Beta positive (positron), and Electron Capture, and it has a short half-life of only 17.6 minutes.
Bromine 80m on the other hand has a half-life of 4.5 hours making it “metastable”. It decays by “Isomeric Transition (IT) via internal-coversion electrons.

Since my reference was quite old I decided to check other locations available online and confirmed that the 80m mode was indeed the metastable version and did not decay by beta negative or beta positive modes. Instead it is the less stable version with a 17.6minute half-life that decays with the beta negative or beta positive modes.

You asked WHY Bromine80 decays with 2 options; i.e. both beta negative and positron (beta positive). Generally it is considered that beta negative decay dominates on the neutron excess side of the mass-parabola and positron decay on the proton rich side of the stable isobar. The actual route of decay is related to a variety of selection rules in quantum mechanics. There are “allowed” and forbidden” transitions to de-excite to a more stable state. However, “forbidden” does not mean it is in fact not allowed, but instead exists with only a low probability.
Details of the classroom lectures on quantum mechanics describing the transitions are now too long ago in my past. I suggest you get a copy of Friedlander or some similar text to fill in the details (they are not trivial).

    
 
 

Product Spotlight

AMIGO2

TSC Amigo2 - ACFM technology has developed a solid reputation for accurately detecting and sizing
...
surface-breaking cracks through paint and coatings. As the industry demands increased performance in speed, signal quality, and portability, it’s time for an evolution. It’s time for Amigo2.
>

GEKKO - Portable Phased Array Testing with TFM in Real-Time

The portable phased array testing system GEKKO provides 64 parallel test channels. On creating testi
...
ng parameters the operator is assisted by the CIVA software. Due to its modular set-up the GEKKO instrument is suitable for operators of all skill levels.
>

Lyft™: Pulsed Eddy Current Reinvented

PEC Reinvented—CUI Programs Redefined Corrosion under insulation (CUI) is possibly the greatest u
...
nresolved asset integrity problem in the industry. Current methods for measuring wall thickness with liftoff, without removing insulation, all have severe limitations. Eddyfi introduces Lyft — a reinvented, high-performance pulsed eddy current (PEC) solution. The patent- pending system features a state-of-the-art portable instrument, real- time C-scan imaging, fast data acquisition with grid-mapping and dynamic scanning modes, and flexibility with long cables. It can also scan through thick metal and insulation, as well as aluminum, stainless steel, and galvanized steel weather jackets. Who else but Eddyfi to reinvent an eddy current technique and redefine CUI programs. Got Lyft?
>

FD800 Bench Top Flaw Detectors

The bench-top FD800 flaw detector range combines state-of-the-art flaw detection with advanced mater
...
ial thickness capabilities. Designed for use in the laboratory these gauges are the tool you need for all your flaw detecting needs.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window
s