where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -
Technical Discussions
S.Mohamed Riaz
S.Mohamed Riaz
15:39 May-06-2009
Magnetization principle transducer

Dear SIr.

I would like to inform that, myself working as a NDT Inspector in Petroleum Industry kuwait. myself like to know about the transducer working in magnetization principle. please give the full details with advantages and application. your prompt reply is highly valuable.

Sang Kim
Consultant, NDT Trainer
Guided Wave Analysis LLC, USA, Joined Feb 2008, 44

Sang Kim

Consultant, NDT Trainer
Guided Wave Analysis LLC,
Joined Feb 2008
18:58 May-06-2009
Re: Magnetization principle transducer
In Reply to S.Mohamed Riaz at 15:39 May-06-2009 (Opening).

Dear Sir,

Magnetostrictive Sensor (MsS) probe uses magnetostrictive principle (mechanical deformation of ferromagnetic material when magnetic field is applied) for generating and receiving ultrasonic wave. The magnetomechanical coupling constant of ferromagnetic material (compared to electromechanical coupling constant in piezoelectric material) is high at low frequency usually lower than 500 kHz. The ultrasonic wave using magnetostrictive principle is used at low-frequency application such as SONAR (sound navigation and ranging) in underwater, massager using ferrite, or MsS probe for long-range ultrasonic testing (LRUT).

MsS probe used for long-range ultrasonic testing (LRUT) in Petrochemical Industry has much merit compared to transducer belt using piezoelectric transducer as follows:

1) MsS probe covers the whole circumference of pipe compared to discrete coverage of pipe circumference with piezoelectric transducer belt. We use torsional or longitudinal wave for LRUT of pipeline. We have to use continuous probe covering 360 degree of pipe circumference because both torsional or longitudinal modes are axial symmetric wave.

2) The guided wave signal generated with MsS probe has better signal-to-noise ratio than that generated with piezoelectric transducer belt because much less generation of flexural wave mode. The piezoelectric transducer belt uses ultrasonic probes located discretely along the circumference of pipe, and it naturally generates flexural wave mode that increases background noise level.

3) The MsS probe generates much stronger guided-wave signal because its probe has more coverage around the circumference of pipe, good impedance matching between steel and ferromagnetic strip, and strong magnetomechanical coupling constant operating at low frequency.

4) The dead zone length and near-field length of MsS probe are much shorter than that with piezoelectric transducer ring. Because MsS probe that covers 360 degree of pipe does not have near-field zone. Therefore, the sum of dead zone length and near field length is about 0.4 ft with 128 kHz, 0.7 ft with 64-kHz, and 1 ft with 32-kHz center frequency on each side of the MsS probe. The near-field length with piezoelectric transducer ring is about 1.5 m (4.9 ft) on each side of the ring (Reference: Guided Wave Testing of an Immersed Gas Pipeline, Material Evaluation/February 2009, page 106).

5) The MsS probe has better direction control compared to discrete piezoelectric transducer belt because it uses axial symmetric probe.

6) Inspecting pipe size: 1/8-inch to 60-inch-OD pipe, pressure vessel bigger than 40-inch-OD using sectional probe

7) Clearance along the length of pipe, that is required for installing probe, is about 2.5 inches.

8) It allows guided wave data of wide-frequency band covering between 5 and 250 kHz. The MsS probe operates usually 1 or 2 cycles of tone-burst electric pulse, it can give you wide band guided-wave data at each center frequency. MsS guided-wave probes operate at different center frequency such as 16 kHz or lower frequency, 32 kHz, 45 kHz, 64 kHz, 90 kHz, 128 kHz, 180 kHz, and 250 kHz.

9) High temperature inspection for a pipe: less than 150 Celsius degree for inspection and 300 Celsius degree for monitoring (once the probe is bonded).

10) Allow installing probe if the pipe circumference of 70 percent or more is accessible. It allows guided-wave inspection without removing heat-tracer line.

11) Application with MsS system is almost the same as that of any system using piezoelectric transducer because the guided wave system is only generating and detecting guided wave in pipeline (or structure). The wave propagation in pipe and its interaction with defect or geometric feature does not change.

12) Inexpensive monitoring probe that can be permanently installed in pipe

For more information about long-range guided-wave system, please visit the following website (http://www.gwanalysis.com/) or email me at skim@gwanalysis.com.


Product Spotlight

CIVA 2020 UT Module

CIVA NDE Simulation Software is the world leader of NDT Simulation. The UT simulation Module incl
udes: - "Beam computation": Beam propagation simulation - "Inspection Simulation": Beam interaction with flaws or specimens The user can simulate a whole inspection process (pulse echo, tandem or TOFD) with a wide range of probes (conventional, Phased- arrays or EMAT), components, and flaws.


Pulse thermography is a non-contact test method that is ideal for the characterization of thin fil
ms and coatings or the detection of defects. With a remarquable short test time and a high detection sensitivity, the Telops TESTD-PT is the perfect tool for non- destructive testing. With such high frame rates, it is even possible to investigate highly conductive or diffusive materials.


Next generation for Phased Array UT is here now with FMC/TFM! Have higher resolution imaging, impr
oved signal to noise ratio, characterize, size and analyze defects better with access to several wave mode views and save raw FMC data for higher quality analysis.  Some of the benefits are:
  • Beautiful Image! Easier to understand what you're looking at
  • Completely focused in entire image or volume
  • Much easier to define setups before inspection
  • Easier to decipher geometry echoes from real defects
  • Oriented defects (e.g. cracks) are imaged better
  • See image from different wave modes from one FMC inspection
  • FMC data can be reprocessed/analyzed without going back to the field

PAUT Probes

Typical Phased Array probes have frequencies between 1MHz and 20MHz and the number of wafers is 10
to 128. M2 Electronics offers customers conventionally ultrasound probes and the ability to provide high-precision Phased Array Ultrasound Probes of up to 256 wafers. We can also customize the probe for our customers to meet the specific application requirements of the user.

We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
this is debug window