where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

353 views
Technical Discussions
Ricki
Ricki
18:06 May-18-2009
Appropriate laser wavelength for propagating solitons

I am currently doing research on propagation and detection of solitons using a pulsed laser source. The propagation is based on the material's response to thermoelastic stresses caused by the laser pulse's rapid heating of the material.
My question concerns the appropriate wavelength to be used for such an experiment. I have been unable to find any research papers or journal articles justifying the best wavelength to use. The papers usually just state which wavelength was used in the experiment but do indeed state the appropriate energy. I need to know if the choice of wavelength is arbitrary, or is there a specific range?

 
 Reply 
 
Mark
Mark
10:47 May-19-2009
Re: Appropriate laser wavelength for propagating solitons
In Reply to Ricki at 18:06 May-18-2009 (Opening).

I am not the most experienced at this, but I'm sure at least one thing you will need to take into account is the reflectivity as a function of wavelength of your material. Since you want to work in the thermoelastic regime you will want a wavelength where absorption is high/ reflection is low, and also a relatively low energy density (you may want to deliberately de-focus or attenuate your laser beam, to avoid working in the plasma regime).

I think in the case of metals, infra red wavelengths are used for plasma-regime ultrasound because the metals reflect strongly at these wavelengths leading to effectively double energy density just above the metal surface, hence plasma formation. Therefore shorter wavelengths would be better for thermoelastic work.

Mark.

 
 Reply 
 

Product Spotlight

GUL Subsea Solutions - Screeening & Monitoring

To inspect new and existing subsea lines, you need proven technology and experience. GUL offers it's
...
technology to solve this challenge: GUL Subsea and gMAT Transducer Rings.
>

High-performance Linear Phased Array Probes

Available to order from stock in a range of 5MHz – 7.5MHz and from 16 to 64 elements. Designed w
...
ith piezo-composite elements, Phoenix phased array probes provide high-resolution imaging to maximise sensitivity; accurate ultrasonic detection and sizing of defects in welds; and effective corrosion mapping. Housed in a rugged stainless steel case for on-site industrial NDT applications.
>

UCI Hardness Tester NOVOTEST T-U2

UCI hardness tester NOVOTEST T-U2 is is used for non-destructive hardness testing of: metals and
...
alloys by scales of hardness: Rockwell (HRC), Brinell (HB), Vickers (HV); non-ferrous metals, alloys of iron etc., and using five additional scales for calibration; with tensile strength (Rm) scale determines the tensile strength of carbon steel pearlitic products by automatic recalculation from Brinell (HB) hardness scale.
>

Customized Probes and Transducers

With a strong development department and our own piezocomposite production, we accompany you from th
...
e first product idea to serial production. Our scientists are continuously researching new methods in the field of ultrasonic measurement technology. The progress achieved enables us to offer you optimal solutions.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window