where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

5556 views
Technical Discussions
PRADEEP SINGH
PRADEEP SINGH
08:24 Dec-22-2009
SDH

How to decide the diameter of SDH in ASME CALIBRATION BLOCK

 
 Reply 
 
Nigel Armstrong
Engineering, - Specialist services
United Kingdom, Joined Oct 2000, 1096

Nigel Armstrong

Engineering, - Specialist services
United Kingdom,
Joined Oct 2000
1096
08:41 Dec-22-2009
Re: SDH
In Reply to PRADEEP SINGH at 08:24 Dec-22-2009 (Opening).

Reading and understanding ASME V Article 4 (if for welds) para T.434 will tell you that SDH's are for non-piping only and the hole diameter should be according to the material thickness as per fig T-434.2.1

If for pipe material then the block should be furnished with notches as per fig T-434.3. Note that the block should be the same nominal size and schedule as the material to be tested.

Further, check your referencing code to make sure that there are no special requirements in it.

 
 Reply 
 
Phil Herman
Sales, - Manufacture of NDT Reference Standards/Test Blocks
PH Tool Reference Standards, USA, Joined Oct 1999, 79

Phil Herman

Sales, - Manufacture of NDT Reference Standards/Test Blocks
PH Tool Reference Standards,
USA,
Joined Oct 1999
79
14:24 Dec-22-2009
Re: SDH
In Reply to PRADEEP SINGH at 08:24 Dec-22-2009 (Opening).

Hello Pradeep,
You have not specified which block you are asking about, but since there are not normally side-drilled holes (SDHs) machined in the Calibration Block for Pipe (Fig. T-434.3), I will assume that you are asking about the Non-Piping Calibration Block (Fig. T-434.2.1). The hole diameters are:
up to 1" thickness - 3/32" (2.5mm) diameter SDH
over 1" to 2" thickness - 1/8" (3.0mm)
over 2" to 3" thickness - 3/16" (5.0mm)
Phil

 
 Reply 
 
Stan
NDT Inspector,
Canada, Joined Jan 2009, 31

Stan

NDT Inspector,
Canada,
Joined Jan 2009
31
15:57 Dec-22-2009
Re: SDH
In Reply to Phil Herman at 14:24 Dec-22-2009 .

Side Drilled Holes as per Fig T-434.2.1 are easy enough to understand, but how do you deal with the side drilled holes for nonpiping calibration blocks on material less than 20" in diameter, with the calibration block meeting the curvature requirements of Fig T-434.1.7.2. The SDH would have to be drilled in a circumferential direction to a minimum length of 1.5". How can this be accomplished?

Stan

 
 Reply 
 
Phil Herman
Sales, - Manufacture of NDT Reference Standards/Test Blocks
PH Tool Reference Standards, USA, Joined Oct 1999, 79

Phil Herman

Sales, - Manufacture of NDT Reference Standards/Test Blocks
PH Tool Reference Standards,
USA,
Joined Oct 1999
79
23:22 Dec-22-2009
Re: SDH
In Reply to Stan at 15:57 Dec-22-2009 .

Stan,
Great question. Circumferentially oriented holes in pipe are tricky. In a perfect world, we'd machine curved holes, along a radius matching the pipe diameter. Since this is virtually impossible to achieve affordably, the industry has long accepted straight holes. Rarely will these holes reach 1.5" minimum depth, except in those combinations of large diameter and heavy walls. Most simply enter the diameter by first carefully machining a spotface or perhaps a corner cutout, and exit by breaking out into the diameter a short distance away. The location of the hole through the wall thickness is accurate only at the midpoint of the hole depth. I'd be happy to assist further if required.

Phil Herman
PH Tool Reference Standards

 
 Reply 
 
Nigel Armstrong
Engineering, - Specialist services
United Kingdom, Joined Oct 2000, 1096

Nigel Armstrong

Engineering, - Specialist services
United Kingdom,
Joined Oct 2000
1096
10:32 Dec-23-2009
Re: SDH
In Reply to Stan at 15:57 Dec-22-2009 .

Most probably difficulty in accurate machining accounts for notches being required over SDH's for piping calibration blocks. After all UT of butt welds in small diameter pipework is not unusual, whereas non-piping (vessels) of 20 inches or less diameter for UT rather than RT must be a rare occurence.

Para. T-434.1.7.1. allows flat blocks for all non-piping diameters greater than 20 inches (500mm). For these, why incur extra cost when flat calibration blocks with non-curved SDH's are acceptable to Code.

I wonder about the relative sensitivities between notches, SDH's and FBH's - it is not comparing like-for-like on the dimensions of actual reflecting surfaces.

 
 Reply 
 
PRADEEP SINGH
PRADEEP SINGH
10:02 Dec-26-2009
Re: SDH
Sir,
As we know the diameter of SDH in non piping ASME CALIBRATION BLOCK in 38 mm block is 3mm.
But why, and How to decide the diameter of that SDH or also what is the general rule for the dia of other SDH or other reflectors.
 
 Reply 
 
Nigel Armstrong
Engineering, - Specialist services
United Kingdom, Joined Oct 2000, 1096

Nigel Armstrong

Engineering, - Specialist services
United Kingdom,
Joined Oct 2000
1096
11:06 Dec-26-2009
Re: SDH
In Reply to PRADEEP SINGH at 10:02 Dec-26-2009 .

Hi Pradeep

For the last part of your post:

ASME V Article 4 Fig T-434.2.1 For Non-piping calibration, "Note (1) For each increase in weld thickness of 2 in. (50 mm) or fraction thereof over 4 in. (100 mm), the hole diameter shall increase 1⁄16 in. (1.5 mm)."

I suppose the minimum 2,5mm diameter SDH geometric tolerances would be the easiest to achieve whilst simultaneously requiring sufficiently searching gain for weld inspection. My guess.

 
 Reply 
 
David Bunch
David Bunch
15:54 Dec-26-2009
Re: SDH
In Reply to PRADEEP SINGH at 08:24 Dec-22-2009 (Opening).

So can someone explain this a little better to me. If a pipe is under 20" in diameter, can the notches of the ASME basic block be used for calibrating sensitivity, or must an actual piece of pipe be used (with notches) to calibrate?

 
 Reply 
 
Ed Ginzel
R & D, -
Materials Research Institute, Canada, Joined Nov 1998, 1303

Ed Ginzel

R & D, -
Materials Research Institute,
Canada,
Joined Nov 1998
1303
17:04 Dec-26-2009
Re: SDH
In Reply to David Bunch at 15:54 Dec-26-2009 .

ASME Section V has become a bit of a hodge-podge and I think it might be time for a complete re-organisation. The "Basic" calibration blocks for non-piping and pipe welds are illustrated in T-434.2.1 and T-434.3. SDHs are to be used for non-pipe welds and notches for pipe weld. A range of thicknesses is given for the plate in which the diameters of SDH are indicated as Phil stated Dec 22. Pipe has traditionally used notches (10% T) as Nigel indicated....note that you are expected to use the exact same pipe (diameter and scheule) for the calibration block as is being tested...i.e. no range of diameters is allowed as is the case for non-piping!
Stan's concern for putting SDHs in curved plate is valid...particularly for the first 4 diameters noted in Figure T434.1.7.2 with the dimaters 26, 43, 72 and 120mm! Where practical" it has always been accepted that the SDH in this case would be made tangential such that it is at the appropriate depth at the tangent...clearly the length requirements cannot be met for these cases.
But there can be an alternative to all this strife if there are sensible AIs.
T-434.1.1 states that, "...An alternative reflector(s) may be used provided that the alternative reflector(s) produces a sensitivity equal to or greater than the specified reflector(s) (e.g. SDHs in lieu of notches, FBHs in lieu of SDHs).
Ermolov equations and CIVA modelling are useful tools to make such rationalisations.
But I would like to see the old "transfer-value" incorporated. I am surprised that ASME has not incorporated the "Transfer Value" technique using a pitch-catch shear wave pair of probes. The Appendix G takes up 3 pages of the Code and provides no practical assurance whereas the Transfer Value is a simple and practical technique that has been used around the world for decades and would be an ideal option to indicate a standarised method of compensation going from flat to durved surfaces.

 
 Reply 
 
Stuart Kenny
Stuart Kenny
16:01 Oct-08-2010
Re: SDH
In Reply to Ed Ginzel at 17:04 Dec-26-2009 .

Hi folks,

Appreciate this a late response to this thread, but I have a particular interest in this subject. I am wondering has anybody any advise for pipe weld ASME calibration blocks when using PA? In my opinion, it is imperative to use SDH's for sensitivity and TCG calibration when using phased array systems, but how do we get around the issue of machining SDH's into curved calibration blocks?

As ASME V states that the reflectors covered in article four are recommended practice and not mandatory, my thoughts are to use a flat calibration block with SDH's to calibrate (IOW or the basic ASME block) and then check adequate sensitivity by scanning the curved calibration block with notches (FIG. T-434.3)? Has anybody got any thoughts on getting around this?

 
 Reply 
 
Roger Duwe
NDT Inspector, API-510, 570, 653
MISTRAS, USA, Joined Jan 2009, 148

Roger Duwe

NDT Inspector, API-510, 570, 653
MISTRAS,
USA,
Joined Jan 2009
148
20:46 Oct-11-2010
Re: SDH
In Reply to Stuart Kenny at 16:01 Oct-08-2010 .

What works well for me is to establish my PA DAC curve using SDH's, typically using the PHTool PACS block, to cover a range greater that one full skip distance. Then I compare that cal with the ID and OD notches on a pipe of similar size. If a transfer coefficient is needed [usually isn't] I put it in by hand.

 
 Reply 
 

Product Spotlight

OPBOX with standard software is able to do all types of inspections and measurements: flaw detection in welds and materials, scanning of objects, testing composite materials, forged and moulded pieces, many UT inspections, measurements of properties of ma

Typical applications: UT measurements with pulse technique, Measurement of thicknesses also at hig
...
h temperatures, Measurements of properties of materials, including fluids and gases We are delivering a standard version of the software (for any Microsoft Windows up to 10 x64 with Microsoft Hardware certification report Approved) and for special needs: SDK with ready to use examples for LabView, MATLAB x64, C++ wrapper for dll, Python and Linux., and also low-level description of how to control our devices directly from any USB tools
>

Immersion systems

ScanMaster ultrasonic immersion systems are designed for high throughput, multi shift operation in a
...
n industrial or lab environment. These fully integrated systems provide various scanning configurations and incorporate conventional and phased arrays technologies to support diverse applications, such as inspection of disks, bars, shafts, billets and plates. All of ScanMaster immersion systems are built from high accuracy scanning frames allowing for scanning of complex parts and include a multi-channel ultrasonic instrument with exceptional performance. The systems are approved by all major manufacturers for C-scan inspection of jet engine forged discs. Together with a comprehensive set of software modules these flexible series of systems provide the customer with the best price performance solutions.
>

IntraPhase Athena Phased Array System

The Athena Phased Array system, manufactured by WesDyne NDE Products & Technology, consists of a pha
...
sed array acquisition system and PC running IntraSpect software. A PC is used to perform acquisition, analysis and storage of the data. System hardware is capable of operating up to four data sets with any combination of phased array or conventional UT probes. NOW AVAILABLE IN 64-64 CONFIGURATION.
>

MUSE Mobile Ultrasonic Equipment

The MUSE, a portable ultrasonic imaging system, was developed for in-field inspections of light-weig
...
ht structures. The MUSE consists of a motor-driven manipulator, a water circulation system for the acoustic coupling and a portable ultrasonic flaw detector (USPC 3010). The MUSE provides images of internal defects (A-, B-,C- and D-scan).
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window