where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

765 views
Technical Discussions
Jeff
Jeff
03:46 Jun-14-2002
Flaw Detection based on 2:1 Noise to Flaw Ratio

Does anyone have any information on this? We are using a 2:1 base metal-to-defect ratio for detection in Friction Stir Weldments. Example: lack-of-penetration is defined when the indication is 6dB higher (2:1) than the noise floor in base metal.

Any information on techniques that use this would be helpful.

Thanks -

Jeff


 
 Reply 
 
Godfrey Hands
Consultant,
PRI Nadcap, United Kingdom, Joined Nov 1998, 307

Godfrey Hands

Consultant,
PRI Nadcap,
United Kingdom,
Joined Nov 1998
307
09:39 Jun-15-2002
Re: Flaw Detection based on 2:1 Noise to Flaw Ratio
: Does anyone have any information on this? We are using a 2:1 base metal-to-defect ratio for detection in Friction Stir Weldments. Example: lack-of-penetration is defined when the indication is 6dB higher (2:1) than the noise floor in base metal.
.
: Any information on techniques that use this would be helpful.
.
: Thanks -

Dear Jeff,
The problem with a 2:1 Flaw/Noise ratio is that the noise can add to the flaw amplitude or subtract from the flaw amplitude. This means that in the worst case scenario where the flaw amplitude (independent of noise) is twice the noise amplitude, and this is then reduced in amplitude by the noise, you have no resultant signal left above the noise.
Conversely, when the amplitude is just below the "threshold" without noise (i.e. acceptable imperfection), and is added to by the noise, this then exceeds the threshold and becomes an apparently rejectable condition.
A 3:1 ratio is more often used, as this gives closer calls to the real condition.
Is thereany way that you can improve the signal to noise ratio and work with 3:1 ? e.g. Higher frequency probes etc ?

Good Luck,

Godfrey Hands
.
: Jeff
.



 
 Reply 
 
David Ponder
David Ponder
07:04 Jun-15-2002
Re: Flaw Detection based on 2:1 Noise to Flaw Ratio
: : Does anyone have any information on this? We are using a 2:1 base metal-to-defect ratio for detection in Friction Stir Weldments. Example: lack-of-penetration is defined when the indication is 6dB higher (2:1) than the noise floor in base metal.
: .
: : Any information on techniques that use this would be helpful.
: .
: : Thanks -
.
: Dear Jeff,
: The problem with a 2:1 Flaw/Noise ratio is that the noise can add to the flaw amplitude or subtract from the flaw amplitude. This means that in the worst case scenario where the flaw amplitude (independent of noise) is twice the noise amplitude, and this is then reduced in amplitude by the noise, you have no resultant signal left above the noise.
: Conversely, when the amplitude is just below the "threshold" without noise (i.e. acceptable imperfection), and is added to by the noise, this then exceeds the threshold and becomes an apparently rejectable condition.
: A 3:1 ratio is more often used, as this gives closer calls to the real condition.
: Is there any way that you can improve the signal to noise ratio and work with 3:1 ? e.g. Higher frequency probes etc ?
.
: Good Luck,
.
: Godfrey Hands
: .
: : Jeff
: .
.Dear Fellow Technicians

I think that increasing the frequency of the probes will only increase the metal noise. The heat affected zone will give you all kinds of false indications with higher frequency. You will not be able to tell the difference between an actual defect and grain boundaries in the material. If you even have the option go with lower frequency. If the data you are using is anything like the AWS specs all they are saying is, any indications that are 6dB higher than the metal noise shall be considered lack of penetration. AWS uses alot of the same type stuff, check AWS D1.5



 
 Reply 
 
Terry Oldberg
Engineering, Mechanical Electrical Nuclear Software
Consultant, USA, Joined Oct 1999, 42

Terry Oldberg

Engineering, Mechanical Electrical Nuclear Software
Consultant,
USA,
Joined Oct 1999
42
09:14 Jun-29-2002
Re: Flaw Detection based on 2:1 Noise to Flaw Ratio
The subject of this posting contains an internal inconsistency that makes the subject itself nonsensical. In particular, "noise" and the related concept "signal" are defined statistically but flaw detection tests do not obey statistics ( see http://www.ndt.net/article/v04n05/oldberg/oldberg.htm ).




 
 Reply 
 

Product Spotlight

High-performance Linear Phased Array Probes

Available to order from stock in a range of 5MHz – 7.5MHz and from 16 to 64 elements. Designed w
...
ith piezo-composite elements, Phoenix phased array probes provide high-resolution imaging to maximise sensitivity; accurate ultrasonic detection and sizing of defects in welds; and effective corrosion mapping. Housed in a rugged stainless steel case for on-site industrial NDT applications.
>

IRIS 9000Plus - Introducing the next generation of heat exchanger inspection.

Representing the seventh generation of the IRIS system, the IRIS 9000 Plus has nearly 200 years of c
...
ombined field inspection experience incorporated in its design. This experience combined with a strong commitment to quality and a history of innovation has made Iris Inspection Services® the undisputed leader in IRIS technology.
>

SITEX CPSERIES

Teledyne ICM’s CPSERIES has been designed with a view to revolutionizing the handling and perfor
...
mances of portable X-Ray sets. Despite having managed to halve the weight of similar portable X-Ray generators available on the market (while continuing to provide the same power output), the SITEX CPSERIES generators feature a shutter, a laser pointer, a beryllium window, an aluminum filter and two integrated diaphragms (customized sizes are available upon request). Without compromising the robustness and reliability for which ICM products are renowned, the small size and light weight of the SITEX CPSERIES will radically change the way that you perform your RT inspections. And you will see a positive impact in terms of both quality and return on investment (ROI).
>

On Demand Webinar: Using Eddy Current Array for Large Areas in Place of Magnetic Particle and Liquid Penetrant Testing

New on-demand webinar on the use of eddy current array (ECA) technology in lieu of liquid penetrant
...
testing (PT) and magnetic particle testing (MT) for large area screenings. The webinar includes an introduction to the technologies with advantages and disadvantages of each. Side by side examples are discussed including aircraft stringers, engine blades, forgings, weld plates & more. View it today.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window