where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

YXLON International GmbH

563 views
Technical Discussions
Ed T.
Ed T.
05:32 Nov-25-2004
Re: UT Cal Blocks for Piping / Curved Surfaces

----------- Start Original Message -----------
: First I want to thank everyone who have been replying to my posts lately. It has beeen a great help for my questions.
: I'm hoping someone can help me here as well.
: Well dealing with piping / curved surfaces 20" diameter and less ASME V requires you to use a curved cal block and they show a diagram for it and stipulate the diameter limitations it can be used for (0.9 - 1.5 times the diametr of the cal block). My question is, what about the thickness range for the curved cal block? Do the curved blocks follow the same requirements as the non curved blocks (ie; up to one inch use a 3/4" or t thickness cal block).
: I would really appreciate some input on this as I am very confused. Thanks.
------------ End Original Message ------------

Hey Ice. I am looking at ASME V, Article 4, 2002 Edition. The diameters for curved surfaces 20” and less are not applicable to piping. The block thicknesses and Block range of use described in T-434.2.2 &T434.2.3 are applicable to non piping applications only, such as vessels.

For piping you must refer to T-434.3. This states “The basic calibration block shall be a section of pipe of the same nominal size and schedule”.
Then it refers you to Fig. T-434.4.1.

Ideally the calibration block would be a sample of the material to be inspected, as required by API-1104 for pipelines. However, that would not be practical in a power plant.

But to answer your question, you are correct. You would need a separate calibration block for each of the pipe sizes and schedules you described. The 4” NPS schedule 40 is not acceptable for use to examine the 4” NPS schedule 80 or 160.

You would need 2 additional calibration blocks.



    
 
 
General
General
02:42 Nov-25-2004
Re: UT Cal Blocks for Piping / Curved Surfaces
So then every diameter and every schedule needs its own cal block. I dont think they really thought that through well when they changed that. It used to be 6 cal blocks would cover you for all diameters for a specified thickness but now you need every one to be individual, wowzers.

It does make sense since it is more of a true representation of your test piece but for the tech now it means carting around a whole bunch more blocks.

Thanks for your reply, I appreciate it.


----------- Start Original Message -----------
: : First I want to thank everyone who have been replying to my posts lately. It has beeen a great help for my questions.
: : I'm hoping someone can help me here as well.
: : Well dealing with piping / curved surfaces 20" diameter and less ASME V requires you to use a curved cal block and they show a diagram for it and stipulate the diameter limitations it can be used for (0.9 - 1.5 times the diametr of the cal block). My question is, what about the thickness range for the curved cal block? Do the curved blocks follow the same requirements as the non curved blocks (ie; up to one inch use a 3/4" or t thickness cal block).
: : I would really appreciate some input on this as I am very confused. Thanks.
: Hey Ice. I am looking at ASME V, Article 4, 2002 Edition. The diameters for curved surfaces 20” and less are not applicable to piping. The block thicknesses and Block range of use described in T-434.2.2 & T434.2.3 are applicable to non piping applications only, such as vessels.
: For piping you must refer to T-434.3. This states “The basic calibration block shall be a section of pipe of the same nominal size and schedule”.
: Then it refers you to Fig. T-434.4.1.
: Ideally the calibration block would be a sample of the material to be inspected, as required by API-1104 for pipelines. However, that would not be practical in a power plant.
: But to answer your question, you are correct. You would need a separate calibration block for each of the pipe sizes and schedules you described. The 4” NPS schedule 40 is not acceptable for use to examine the 4” NPS schedule 80 or 160.
: You would need 2 additional calibration blocks.
------------ End Original Message ------------




    
 
 
Ed T.
Ed T.
03:22 Nov-25-2004
Re: UT Cal Blocks for Piping / Curved Surfaces
----------- Start Original Message -----------
: So then every diameter and every schedule needs its own cal block. I dont think they really thought that through well when they changed that. It used to be 6 cal blocks would cover you for all diameters for a specified thickness but now you need every one to be individual, wowzers.
: It does make sense since it is more of a true representation of your test piece but for the tech now it means carting around a whole bunch more blocks.
: Thanks for your reply, I appreciate it.
:
: : : First I want to thank everyone who have been replying to my posts lately. It has beeen a great help for my questions.
: : : I'm hoping someone can help me here as well.
: : : Well dealing with piping / curved surfaces 20" diameter and less ASME V requires you to use a curved cal block and they show a diagram for it and stipulate the diameter limitations it can be used for (0.9 - 1.5 times the diametr of the cal block). My question is, what about the thickness range for the curved cal block? Do the curved blocks follow the same requirements as the non curved blocks (ie; up to one inch use a 3/4" or t thickness cal block).
: : : I would really appreciate some input on this as I am very confused. Thanks.
: : Hey Ice. I am looking at ASME V, Article 4, 2002 Edition. The diameters for curved surfaces 20” and less are not applicable to piping. The block thicknesses and Block range of use described in T-434.2.2 & T434.2.3 are applicable to non piping applications only, such as vessels.
: : For piping you must refer to T-434.3. This states “The basic calibration block shall be a section of pipe of the same nominal size and schedule”.
: : Then it refers you to Fig. T-434.4.1.
: : Ideally the calibration block would be a sample of the material to be inspected, as required by API-1104 for pipelines. However, that would not be practical in a power plant.
: : But to answer your question, you are correct. You would need a separate calibration block for each of the pipe sizes and schedules you described. The 4” NPS schedule 40 is not acceptable for use to examine the 4” NPS schedule 80 or 160.
: : You would need 2 additional calibration blocks.
------------ End Original Message ------------

Yoou're welcome. But remember, that is for piping. If you are examining non-piping the 0.9 to 1.5 applies.



    
 
 
Bill
Bill
02:14 Jan-26-2007
Hello
----------- Start Original Message ----------- : So then every diameter and every schedule needs its own cal block. I dont think they really thought that through well when they changed that. It used to be 6 cal blocks would cover you for all diameters for a specified thickness but now you need every one to be individual, wowzers. : It does make sense since it is more of a true representation of your test piece but for the tech now it means carting around a whole bunch more blocks. : Thanks for your reply, I appreciate it. : : : : First I want to thank everyone who have been replying to my posts lately. It has beeen a great help for my questions. : : : I'm hoping someone can help me here as well. : : : Well dealing with piping / curved surfaces 20" diameter and less ASME V requires you to use a curved cal block and they show a diagram for it and stipulate the diameter limitations it can be used for (0.9 - 1.5 times the diametr of the cal block). My question is, what about the thickness range for the curved cal block? Do the curved blocks follow the same requirements as the non curved blocks (ie; up to one inch use a 3/4" or t thickness cal block). : : : I would really appreciate some input on this as I am very confused. Thanks. : : Hey Ice. I am looking at ASME V, Article 4, 2002 Edition. The diameters for curved surfaces 20” and less are not applicable to piping. The block thicknesses and Block range of use described in T-434.2.2 & T434.2.3 are applicable to non piping applications only, such as vessels. : : For piping you must refer to T-434.3. This states “The basic calibration block shall be a section of pipe of the same nominal size and schedule”. : : Then it refers you to Fig. T-434.4.1. : : Ideally the calibration block would be a sample of the material to be inspected, as required by API-1104 for pipelines. However, that would not be practical in a power plant. : : But to answer your question, you are correct. You would need a separate calibration block for each of the pipe sizes and schedules you described. The 4” NPS schedule 40 is not acceptable for use to examine the 4” NPS schedule 80 or 160. : : You would need 2 additional calibration blocks. ------------ End Original Message ------------


    
 
 

Product Spotlight

I&T Nardoni

NDT, RESEARCH AND DEVELOPMENT OF NEW METHODOLOGY, TRAINING CENTER I&T NARDON INSTITUTE was idiated
...
in 1988 by Giuseppe Nardoni, now president and owner of the company, based on his multi-annual and international experience in the field of NDT.
>

AMIGO2

TSC Amigo2 - ACFM technology has developed a solid reputation for accurately detecting and sizing
...
surface-breaking cracks through paint and coatings. As the industry demands increased performance in speed, signal quality, and portability, it’s time for an evolution. It’s time for Amigo2.
>

Teletest Focus+

Teletest Focus+ electronics have superior capabilities than rivals on the market. Beyond the usual
...
test features, Focus+ has 24 transmit channels and 24 receive channels, with an additional on-board switching capabilities. The instrument's frequency range is 10–300 kHz.
>

FAAST-PA! OEM Patented phased Array for high speed UT inspection

Multiangle, Multifocus, Multifrequency, Multibeam. Instead of stacking UT electronics and having m
...
any PA probes, FAAST-PA is able to transmit all delay laws within ONE single shot in Real time.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window