where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

IMechE Engineering Training Solutions
World leading provider of Non-Destructive Testing and Corrosion Prevention and Coatings training, examinations and Level 3 Consultancy Services

823 views
Technical Discussions
Don W
Don W
06:51 Dec-01-2004
Optimum probe frequency and sampling rates

I wish to measure a water gap to an accuracy of +/- 20um using a spherically focussed UT immersion probe. What probe frequency, probe characteristics (broad-band/highly dampled etc) and A/D sampling rates are required to achieve this?
Is there an ASME of EN standard that would apply ?


    
 
 
Pim van Andel
Pim van Andel
02:49 Dec-01-2004
Re: Optimum probe frequency and sampling rates
----------- Start Original Message -----------
: I wish to measure a water gap to an accuracy of +/- 20um using a spherically focussed UT immersion probe. What probe frequency, probe characteristics (broad-band/highly dampled etc) and A/D sampling rates are required to achieve this?
: Is there an ASME of EN standard that would apply ?
------------ End Original Message ------------

Recently I made a system with a 1um resolution for one of our customers. I used a not focussed highly damped 15MHz transducer and a 8bit, 100MSample/sec A/D on a low cost ultrasonic PC instrument (UltraZ). I used FFT resampling to 1GSample/sec and used cross correlation with a 1nsec resolution to find the time delay. Beam divergence and unexpected delays make the relation between time of flight and gap width less trivial. And I had to use various compensations for temperature effects (UltraZ can also measure temperature). Apparently your problem is at least 20 times less complex ;)

Regards,
Pim van Andel


    
 
 
Ed Ginzel
R & D, -
Materials Research Institute, Canada, Joined Nov 1998, 1235

Ed Ginzel

R & D, -
Materials Research Institute,
Canada,
Joined Nov 1998
1235
04:28 Dec-05-2004
Re: Optimum probe frequency and sampling rates
Don:
I do not think that ASME and ASTM have developed considerations specific to digital applications for thickness determination. I am not so familiar with EN Standards, but in 1989 IIW issued a handy little booklet , "Automated Ultrasonic Inspection of Welds", ISBN 0 903132 15 X

They considered the minimum "recommended" digitisation for an AUT system to be about 5 times the nominal probe frequency. But that was to ensure that amplitude was within 1dB of true (analogue) peak.

Your application has water as the medium to be "timed". At 1500m/s and a 20ns sample interval (50MHz digitisation), the 20ns would represent 15 microns. That is close to your requirement.

If it is only the first arrival over a threshold I suppose any probe frequency would suffice. I would think you could improve results with a broadband probe of a higher (10-20MHz) frequency. I suspect best results would be had if the distance measured was close to the near zone or focal distance if focused. If the system uses peak amplitude to indicate travel time of the signal then a higher digitisation would be better.

20microns is reasonably achievable electronically but a good mechanical positioning will be critical. there are about 100 microns in the thickness of a sheet of paper so you are looking for a very subtle change.

Regards
Ed

----------- Start Original Message -----------
: : I wish to measure a water gap to an accuracy of +/- 20um using a spherically focussed UT immersion probe. What probe frequency, probe characteristics (broad-band/highly dampled etc) and A/D sampling rates are required to achieve this?
: : Is there an ASME of EN standard that would apply ?
: Recently I made a system with a 1um resolution for one of our customers. I used a not focussed highly damped 15MHz transducer and a 8bit, 100MSample/sec A/D on a low cost ultrasonic PC instrument (UltraZ). I used FFT resampling to 1GSample/sec and used cross correlation with a 1nsec resolution to find the time delay. Beam divergence and unexpected delays make the relation between time of flight and gap width less trivial. And I had to use various compensations for temperature effects (UltraZ can also measure temperature). Apparently your problem is at least 20 times less complex ;)
: Regards,
: Pim van Andel
------------ End Original Message ------------




    
 
 
justin timberlake
justin timberlake
02:33 Jan-19-2005
justin timberlake

----------- Start Original Message -----------
: Don:
: I do not think that ASME and ASTM have developed considerations specific to digital applications for thickness determination. I am not so familiar with EN Standards, but in 1989 IIW issued a handy little booklet , "Automated Ultrasonic Inspection of Welds", ISBN 0 903132 15 X
: They considered the minimum "recommended" digitisation for an AUT system to be about 5 times the nominal probe frequency. But that was to ensure that amplitude was within 1dB of true (analogue) peak.
: Your application has water as the medium to be "timed". At 1500m/s and a 20ns sample interval (50MHz digitisation), the 20ns would represent 15 microns. That is close to your requirement.
: If it is only the first arrival over a threshold I suppose any probe frequency would suffice. I would think you could improve results with a broadband probe of a higher (10-20MHz) frequency. I suspect best results would be had if the distance measured was close to the near zone or focal distance if focused. If the system uses peak amplitude to indicate travel time of the signal then a higher digitisation would be better.
: 20microns is reasonably achievable electronically but a good mechanical positioning will be critical. there are about 100 microns in the thickness of a sheet of paper so you are looking for a very subtle change.
: Regards
: Ed
: : : I wish to measure a water gap to an accuracy of /- 20um using a spherically focussed UT immersion probe. What probe frequency, probe characteristics (broad-band/highly dampled etc) and A/D sampling rates are required to achieve this?
: : : Is there an ASME of EN standard that would apply ?
: : Recently I made a system with a 1um resolution for one of our customers. I used a not focussed highly damped 15MHz transducer and a 8bit, 100MSample/sec A/D on a low cost ultrasonic PC instrument (UltraZ). I used FFT resampling to 1GSample/sec and used cross correlation with a 1nsec resolution to find the time delay. Beam divergence and unexpected delays make the relation between time of flight and gap width less trivial. And I had to use various compensations for temperature effects (UltraZ can also measure temperature). Apparently your problem is at least 20 times less complex ;)
: : Regards,
: : Pim van Andel
------------ End Original Message ------------

mnrapidnsale.com I'm not sure if I will follow through with http://online-shopping-.rapidnsale.com/online-shopping-.html get online shopping my urge or not. If I do, it must of course be http://jennifer-aniston.rapidnsale.com/jennifer-aniston.html jennifer aniston done relentlessly. I can relate, as I feel myself http://the-simpsons.rapidnsale.com/the-simpsons.html web the simpsons distancing myself from this tedium, far more http://health-insurance.rapidnsale.com/health-insurance.html health insurance interested in the shifting time signatures in http://johnny-depp.rapidnsale.com/johnny-depp.html johnny depp the song I'm listening to (threeof three followed http://carmen-electra.rapidnsale.com/carmen-electra.html carmen electra by one of two) than in any idea of "work" at http://angelina-jolie.rapidnsale.com/angelina-jolie.html angelina jolie this place. Had a long talk with Leah, last night. http://web-design.rapidnsale.com/web-design.html web design rapidnsale.comnm


    
 
 

Product Spotlight

GEKKO - Portable Phased Array Testing with TFM in Real-Time

The portable phased array testing system GEKKO provides 64 parallel test channels. On creating testi
...
ng parameters the operator is assisted by the CIVA software. Due to its modular set-up the GEKKO instrument is suitable for operators of all skill levels.
>

FAAST-PA! OEM Patented phased Array for high speed UT inspection

Multiangle, Multifocus, Multifrequency, Multibeam. Instead of stacking UT electronics and having m
...
any PA probes, FAAST-PA is able to transmit all delay laws within ONE single shot in Real time.
>

MUSE Mobile Ultrasonic Equipment

The MUSE, a portable ultrasonic imaging system, was developed for in-field inspections of light-weig
...
ht structures. The MUSE consists of a motor-driven manipulator, a water circulation system for the acoustic coupling and a portable ultrasonic flaw detector (USPC 3010). The MUSE provides images of internal defects (A-, B-,C- and D-scan).
>

IntraPhase Athena Phased Array System

The Athena Phased Array system, manufactured by WesDyne NDE Products & Technology, consists of a pha
...
sed array acquisition system and PC running IntraSpect software. A PC is used to perform acquisition, analysis and storage of the data. System hardware is capable of operating up to four data sets with any combination of phased array or conventional UT probes. NOW AVAILABLE IN 64-64 CONFIGURATION.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window