where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

1325 views
Technical Discussions
Arianna Macchi
Consultant
Italy, Joined Apr 2005, 6

Arianna Macchi

Consultant
Italy,
Joined Apr 2005
6
09:01 Jun-06-2005
Couplant for porous stones

Dear colleagues

I'm trying to perform simple UT attenuation measurements on porous stones with a 500 KHz contact transducer in pulse-echo configuration. I'm using vaseline as couplant but I've noticed that when the couplant begins to melt (i.e. becomes more fluid) the sensitivity decrease significantly. By suppyling a new amount of fresh (more solid) substance, things get better, but this happens every 10-15 seconds.

Can you suggest me some possible alternative to vaseline??


 
 Reply 
 
John Brunk
Engineering, NDT Level III
Self employed, part-time, USA, Joined Oct 1999, 162

John Brunk

Engineering, NDT Level III
Self employed, part-time,
USA,
Joined Oct 1999
162
03:13 Jun-06-2005
Re: Couplant for porous stones
----------- Start Original Message -----------
: Dear colleagues
: I'm trying to perform simple UT attenuation measurements on porous stones with a 500 KHz contact transducer in pulse-echo configuration. I'm using vaseline as couplant but I've noticed that when the couplant begins to melt (i.e. becomes more fluid) the sensitivity decrease significantly. By suppyling a new amount of fresh (more solid) substance, things get better, but this happens every 10-15 seconds.
: Can you suggest me some possible alternative to vaseline??
------------ End Original Message ------------

Your data will be altered by couplant entering pores in the samples. You should use self-coupling (dry coupling)transducers. I have used these successfully to examine a variety of porous materials. One source for these is Ultran. If you can't obtain new transducers you might be able to use sheet dental adhesive as a coupling layer. Attenuation will then vary with pressure but maybe you could measure the difference between the first and second back reflections. You should try to get the vaseline out of your samples and re-test them.


 
 Reply 
 
Tom Nelligan
Engineering,
retired, USA, Joined Nov 1998, 390

Tom Nelligan

Engineering,
retired,
USA,
Joined Nov 1998
390
03:16 Jun-06-2005
Re: Couplant for porous stones
Several companies (including mine) offer very high viscosity ultrasonic couplants for use with normal incidence shear wave transducers. That sort of medium also works well for coupling longitudinal wave transducers on porous materials, because the very high viscosity limits absorption. I'd suggest that you try a commercial shear wave couplant.

Tom Nelligan
Senior Applications Engineer
Panametrics-NDT, a business of R/D Tech
www.panametrics-ndt.com


----------- Start Original Message -----------
: Dear colleagues
: I'm trying to perform simple UT attenuation measurements on porous stones with a 500 KHz contact transducer in pulse-echo configuration. I'm using vaseline as couplant but I've noticed that when the couplant begins to melt (i.e. becomes more fluid) the sensitivity decrease significantly. By suppyling a new amount of fresh (more solid) substance, things get better, but this happens every 10-15 seconds.
: Can you suggest me some possible alternative to vaseline??
------------ End Original Message ------------




 
 Reply 
 
Udo Schlengermann
Consultant, -
Standards Consulting, Germany, Joined Nov 1998, 183

Udo Schlengermann

Consultant, -
Standards Consulting,
Germany,
Joined Nov 1998
183
09:16 Jun-07-2005
Re: Couplant for porous stones
Reply

Hello,
coming back to the original task: Determination of sound attenuation:
On porous stones, I suppose, it can only be measured for longitudinal waves, and only using the through-transmission technique, with separate transmitter and receiver probes on opposite sides of the sample.
And this can only be a relative measurement compared to a reference sample, using always the same equipment and same set-up.
Losses by changing coupling conditions and by changing divergence losses of the sound beams from sample to sample are much bigger than the losses by attenuation (scattering) in the objects itself.
As mentioned in the replies from collegues before, the change of the elastic properties of couplant during measurement will change the sound transfer conditions (decreasing transmissivity at the boundaries. But filling the pores of your object with liquid will improve transmission in the object. So depending on the measurement conditions (time) the calculated attenuation coefficient will bea random figure.
On porous materials a valid relative attenuation coefficient can only be achieved by dry coupling conditions i.e. using dry coupling probes in a rig (probes aligned controlled pressure) or very thin foils between probes and sample to avoid pentration of a fluid couplant.

Kind regards
Udo Schlengermann
Applications Laboratory
GE Inspection Technologies GmbH
Huerth, Germany


----------- Start Original Message -----------
: Dear colleagues
: I'm trying to perform simple UT attenuation measurements on porous stones with a 500 KHz contact transducer in pulse-echo configuration. I'm using vaseline as couplant but I've noticed that when the couplant begins to melt (i.e. becomes more fluid) the sensitivity decrease significantly. By suppyling a new amount of fresh (more solid) substance, things get better, but this happens every 10-15 seconds.
: Can you suggest me some possible alternative to vaseline??
------------ End Original Message ------------




 
 Reply 
 

Product Spotlight

IRIS 9000Plus - Introducing the next generation of heat exchanger inspection.

Representing the seventh generation of the IRIS system, the IRIS 9000 Plus has nearly 200 years of c
...
ombined field inspection experience incorporated in its design. This experience combined with a strong commitment to quality and a history of innovation has made Iris Inspection Services® the undisputed leader in IRIS technology.
>

ISAFE3 Intrinsically Safe Sensor System

ISAFE3 intrinsically safe sensor system of Vallen Systeme is especially targeted at the petrochemica
...
l - as well as oil and gas transportation industry. The sensor system is designed for permanent monitoring or periodic inspection tasks. Sensors are available for different AE-frequency ranges optimized for corrosion and fatigue crack detection and other applications. The ISAFE 3 sensor system consists of an AE-sensor (model ISAS3) certified according to ATEX/IEC for installation in zone 0, gas group IIC, IP68, 20 to +60 °C, and a signal isolator (model SISO3) certified for installation in zone 2. An ISAS3 sensor can be mounted in atmosphere or submerged, e.g. in water or crude oil. It is supported by mounting tools for temporary (magnets) or permanent (welded) installation. ISAFE3 supports automatic sensor coupling test and can be used with any AE signal processor supporting 28V supply at 90 mA peak, e.g. Vallen Systeme ASIP-2/A.
>

iProbe - USB Phased Array Probe

Turn your PC, Laptop or Tablet into a powerful 32:64 Phased Array system with our USB powered Phas
...
ed Array iProbe and inspection software package. Perform affordable weld inspection and corrosion mapping inspections with this powerful but small system. The probe has a 100V pulser, 8K PRF, dual axis encoder input and achieves outstanding signal quality.
>

NEW Wheel Type Phased Array Probe

DOPPLER NEW Wheel Type Phased Array Probe, more stable, new tyre makes lesser acoustic attenuation
...
, much lighter makes easier to handle, more slim size, magnetic and mechanical encoder optional etc...more
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window