 
8734 views  Technical Discussions   Mukesh Kumar Bhatt
 Mukesh Kumar Bhatt
 08:31 Aug052005 Near Field in Angle beam testing Can anybody tell me how to calaulte length of Near field in angle beam(Rectangular shaped crystals) testing.
 
   Biju Varghese
 Biju Varghese
 07:27 Aug102005 Re: Near Field in Angle beam testing  Start Original Message  : Can anybody tell me how to calaulte length of Near field in angle beam(Rectangular shaped crystals) testing.  End Original Message  Dear Mukesh Here is the formula you are looking for N=K*(aeff*aeff*f)/c K=1.3 for side ratio not exceeding 1.12 aeff=half effective length of the larger side of the crystal You may refer to RDTECH new book Introduction to Phased Array Ultrasonic Technology Applications page no. 48. K factor will depend upon the lenght to width ratio.
 
   Ed Ginzel R & D,  Materials Research Institute, Canada, Joined Nov 1998, ^{1219}   04:25 Aug102005 Re: Near Field in Angle beam testing Mukesh: Thanks for pointing that graph out! I missed it in my first read of the text! The graph in the RD Tech Phased array book shows that the correction factor is actually the highest for a square element and it drops to 1 (i.e. K in the equation equals unity) for a ratio of 0.4:1 (width to length). Professor I.N. Ermolov wrote a small booklet (Calculations in Ultrasonic Testing) and made an approximation which may be easier to remember. N=S/pi*lamda where N is the Near Field length S is the area of the element pi = 3.14 lamda is the wavelength of the mode in which the wave is transmitted. This approximation he caustions is applicable for probe elements with a length to width ratio of up to 2:1. Ermolov does indicate that this is an approximation! Considering that no probe is generating a single frequency (i.e. it has bandwidth) the use of a single wavelength in the equation is perhaps a bit misleading. As well, the mechanical clamping of a rectagular piston is not likelyto provide a uniform particle displacement so lobe effects may dominate. For probe construction calculations the equation you quoted would be best! For ease of application for the average tech in the field perhaps Dr. Ermolov's equation is suitable. Something that shouldbe noted from the RD Tech Phased Array book that relates to the original question on angle beam testing is the wedge delay. On the same page (48) the last line has an equation that shows the portion of time in the wedge must be subtracted from the near field calculated in the test piece. Regards Ed  Start Original Message  : : Can anybody tell me how to calaulte length of Near field in angle beam(Rectangular shaped crystals) testing. : Dear Mukesh : Here is the formula you are looking for : N=K*(aeff*aeff*f)/c K=1.3 for side ratio not exceeding 1.12 : aeff=half effective length of the larger side of the crystal : You may refer to RDTECH new book Introduction to Phased Array Ultrasonic Technology Applications page no. 48. K factor will depend upon the lenght to width ratio.  End Original Message 
 
   NITIN H.KOKANE
 NITIN H.KOKANE
 09:39 Aug182005 Re: Near Field in Angle beam testing sir, we are developing Near Field Testing at BELGHAZIABAD ,INDIA. Please tell me how to test parabolic Antennas . Regards, Nitin Start Original Message  : Mukesh: : Thanks for pointing that graph out! I missed it in my first read of the text! : The graph in the RD Tech Phased array book shows that the correction factor is actually the highest for a square element and it drops to 1 (i.e. K in the equation equals unity) for a ratio of 0.4:1 (width to length). : Professor I.N. Ermolov wrote a small booklet (Calculations in Ultrasonic Testing) and made an approximation which may be easier to remember. : N=S/pi*lamda : where N is the Near Field length : S is the area of the element : pi = 3.14 : lamda is the wavelength of the mode in which the wave is transmitted. : This approximation he caustions is applicable for probe elements with a length to width ratio of up to 2:1. : Ermolov does indicate that this is an approximation! : Considering that no probe is generating a single frequency (i.e. it has bandwidth) the use of a single wavelength in the equation is perhaps a bit misleading. As well, the mechanical clamping of a rectagular piston is not likely to provide a uniform particle displacement so lobe effects may dominate. : For probe construction calculations the equation you quoted would be best! For ease of application for the average tech in the field perhaps Dr. Ermolov's equation is suitable. : Something that shouldbe noted from the RD Tech Phased Array book that relates to the original question on angle beam testing is the wedge delay. On the same page (48) the last line has an equation that shows the portion of time in the wedge must be subtracted from the near field calculated in the test piece. : Regards : Ed : : : Can anybody tell me how to calaulte length of Near field in angle beam(Rectangular shaped crystals) testing. : : Dear Mukesh : : Here is the formula you are looking for : : N=K*(aeff*aeff*f)/c K=1.3 for side ratio not exceeding 1.12 : : aeff=half effective length of the larger side of the crystal : : You may refer to RDTECH new book Introduction to Phased Array Ultrasonic Technology Applications page no. 48. K factor will depend upon the lenght to width ratio.  End Original Message 
 
   Simon Amallraja
 Simon Amallraja
 03:19 Aug192005 Re: Near Field in Angle beam testing  Start Original Message  : sir, : we are developing Near Field Testing at BELGHAZIABAD ,INDIA. Please tell me how to test parabolic Antennas . : Regards, : Nitin :  Start Original Message  : : Mukesh: : : Thanks for pointing that graph out! I missed it in my first read of the text! : : The graph in the RD Tech Phased array book shows that the correction factor is actually the highest for a square element and it drops to 1 (i.e. K in the equation equals unity) for a ratio of 0.4:1 (width to length). : : Professor I.N. Ermolov wrote a small booklet (Calculations in Ultrasonic Testing) and made an approximation which may be easier to remember. : : N=S/pi*lamda : : where N is the Near Field length : : S is the area of the element : : pi = 3.14 : : lamda is the wavelength of the mode in which the wave is transmitted. : : This approximation he caustions is applicable for probe elements with a length to width ratio of up to2:1. : : Ermolov does indicate that this is an approximation! : : Considering that no probe is generating a single frequency (i.e. it has bandwidth) the use of a single wavelength in the equation is perhaps a bit misleading. As well, the mechanical clamping of a rectagular piston is not likely to provide a uniform particle displacement so lobe effects may dominate. : : For probe construction calculations the equation you quoted would be best! For ease of application for the average tech in the field perhaps Dr. Ermolov's equation is suitable. : : Something that shouldbe noted from the RD Tech Phased Array book that relates to the original question on angle beam testing is the wedge delay. On the same page (48) the last line has an equation that shows the portion of time in the wedge must be subtracted from the near field calculated in the test piece. : : Regards : : Ed : : : : Can anybody tell me how to calaulte length of Near field in angle beam(Rectangular shaped crystals) testing. : : : Dear Mukesh : : : Here is the formula you are looking for : : : N=K*(aeff*aeff*f)/c K=1.3 for side ratio not exceeding 1.12 : : : aeff=half effective length of the larger side of the crystal : : : You may refer to RDTECH new book Introduction to Phased Array Ultrasonic Technology Applications page no. 48. K factor will depend upon the lenght to width ratio.  End Original Message Contact Mr. Sanjeev Kaul of Mahindra Intertrade Ltd, DElhi Office @ 01151220357 or mobile: 9811201495(Delhi) and he will help you on all the reqts like method of testing and Phased Array System etc., and any other applications related in NDT. Simon Amallraja.
 
   Udo Schlengermann Consultant,  Standards Consulting, Germany, Joined Nov 1998, ^{174}   06:58 Sep012005 Re: Near Field in Angle beam testing reply by Udo Schlengermann:Generally the near field length of ultrasonic transducers is determined by the area and shape of the source and the wavelength. The nearfield length is directly proportional to area and inverse proportional to wavelength. For a circular transducer the area is given by pi and radius squared. For a rectangular transducer the area is given by side a times side b. So in general the nearfield length of a rectangular transducer is given by the equation N = k(b/a)x(a^2)/lambda. The factor k depends on the ratio (small side b/large side a). This dimensionless factor k is between 0.99 (line) and 1.38 (square). There is no analytical equation to calculate the factor k. Approximatative equations for rectangles containing the factor pi are not exact, because they use circular sectors as approximation for a rectanglar source. You will find a correct diagram for this factor k(a/b) for rectangular transducers in the European standard EN 126682:2000 Nondestructive testing  Characterization and verification of ultrasonic examination equipment  Part 2:Probes in figure A.1,valid for all ratios a/lambda > 10. Further information on the sound beam of rectangular transducers have been published by me in 1977: Evaluation of the effective sound field data with the distance law for sound pressure (in German). Materialpruefung vol.19 (1977) p.5358. Kind regards Udo Schlengermann GE Inspection Technologies GmbH, Huerth, Germany udo.schlengermann@ae.ge.com  Start Original Message  : Can anybody tell me how to calaulte length of Near field in angle beam(Rectangular shaped crystals) testing.  End Original Message 
 
   NITIN H. KOKANE
 NITIN H. KOKANE
 00:59 Apr282007 Re: Near Field in Angle beam testing i am unable to generate far field data from near field data.plz let me know. regards, Nitin  Start Original Message  : : sir, : : we are developing Near Field Testing at BELGHAZIABAD ,INDIA. Please tell me how to test parabolic Antennas . : : Regards, : : Nitin : :  Start Original Message  : : : Mukesh: : : : Thanks for pointing that graph out! I missed it in my first read of the text! : : : The graph in the RD Tech Phased array book shows that the correction factor is actually the highest for a square element and it drops to 1 (i.e. K in the equation equals unity) for a ratio of 0.4:1 (width to length). : : : Professor I.N. Ermolov wrote a small booklet (Calculations in Ultrasonic Testing) and made an approximation which may be easier to remember. : : : N=S/pi*lamda : : : where N is the Near Field length : : : S is the area of the element : : : pi = 3.14 : : : lamda is the wavelength of the mode in which the wave is transmitted. : : : This approximation he caustions is applicable for probe elements with a length to width ratio of up to 2:1. : : : Ermolov does indicate that this is an approximation! : : : Considering that no probe is generating a single frequency (i.e. it has bandwidth) the use of a single wavelength in the equation is perhaps a bit misleading. As well, the mechanical clamping of a rectagular piston is not likely to provide a uniform particle displacement so lobe effects may dominate. : : : For probe construction calculations the equation you quoted would be best! For ease of application for the average tech in the field perhaps Dr. Ermolov's equation is suitable. : : : Something that shouldbe noted from the RD Tech Phased Array book that relates to the original question on angle beam testing is the wedge delay. On the same page (48) the last line has an equation that shows the portion of time in the wedge must be subtracted from the near field calculated in the test piece. : : : Regards : : : Ed : : : : : Can anybody tell me how to calaulte length of Near field in angle beam(Rectangular shaped crystals) testing. : : : : Dear Mukesh : : : : Here is the formula you are looking for : : : : N=K*(aeff*aeff*f)/c K=1.3 for side ratio not exceeding 1.12 : : : : aeff=half effective length of the larger side of the crystal : : : : You may refer to RDTECH new book Introduction to Phased Array Ultrasonic Technology Applications page no. 48. K factor will depend upon the lenght to width ratio. : Contact Mr. Sanjeev Kaul of Mahindra Intertrade Ltd, DElhi Office @ 01151220357 or mobile: 9811201495(Delhi) and he will help you on all the reqts like method of testing and Phased Array System etc., and any other applications related in NDT. : Simon Amallraja.  End Original Message 
 
   Marc Ellyson
 Marc Ellyson
 18:10 Jun112009 Re: Near Field in Angle beam testing In Reply to Udo Schlengermann at 06:58 Sep012005 .
Hi everyone,
Though this post is little old, it covers the exact topic I was looking for. I've read with interest answers from Ginzel and Schlengermann as I wanted to calculate the near field of a rectangular linear phased array probe with the following specifications:
PA probe specifications:
Frequency: 2.25Mhz
Nb of elmt: 20
Pitch: 1.2mm
Elmt width: 1.16mm
Gap: 0.04mm
Elevation: 12mm
Calculated active aperture: 23.96mm along primary axis
Then I used the R/D Tech book equation, the Ermolov eq. and the Udo Schlengermann eq. to find out that results were surprisingly different. Below are the results:
I've assumed the following for all calculations:
 Lwave velocity of 5.9mm/µs
 Width/length aspect ratio of 0.5
 k factor of 1.01
 Probe in direct contact at 0°
R/D Book eq.:
N = (k*aperture^2*freq)/(4*velocity)
N = 55.40mm
Ermolov:
N=S/pi*lamda
where N is the Near Field length
S is the area of the element, S=12*23.96=287.52mm^2
pi = 3.14
N = 34.90mm
Schlengermann:
N = k*(b/a)x(a^2)/lambda.
small side b/large side a
lamda=2.62mm
N = 110.98mm
Can anyone explain these differences? Am I misunderstanting something here?
Thanks for your help,
Marc  
   emil shavakis
 emil shavakis
 01:40 Jun122009 Re: Near Field in Angle beam testing In Reply to Marc Ellyson at 18:10 Jun112009 .
And then we set it on a wedge, cause it to convert to shear mode and believe. Focuspocus. I guess we need to measure the effect in and not rely on the formulas.  
   Udo Schlengermann Consultant,  Standards Consulting, Germany, Joined Nov 1998, ^{174}   16:48 Jun122009 Re: Near Field in Angle beam testing In Reply to Marc Ellyson at 18:10 Jun112009 .
Hello Marc,
There may be a problem with reading equations correctly when written in the text mode of emails, I must apologize for this.
Clearing the situation for your example: f = 2.25 MHz, longitudinal waves in steel c = 5920 m/s, active transducer aperture 24 mm x 12 mm = 288 sqmm.
case 1 (R/D solution):
N = k (2a)squared /4lambda = k f (a)squared /c
example: N = 1.01 * 2.25 * 144 / 5.92 = 55.3 mm
case 2 (Ermolov's solution)
This assumes that a circular disk of same area as the rectangular transducer has the same nearfield length, which is not true.
example: S = 288 mm = pi (r)squared , where r ist the radius of the equivalent disk.
For S = 288 sq mm, the equivalent radius is sqroot(91,67325) = 9,5746 mm,
equivalent N = (r)squared/lambda = (r)quared f/c = 91,67325 * 2.25/5.92 = 34,8 mm.
case 3 (my solution):
N = k (a)squared/ lamda = k (a) squared f / c;
k is a function of ratio (b/a), the exact value for (b/a)=0.5 is k=1.014.
This was written as k(a/b), not meaning k times (b/a).
example: N = 1,014 * 144 * 2,25/5,92 = 55,5 mm.
Solutions 1 and 2 are equal, approximation 3 gives a much too small nearfield length.
For more information read Krautkramer, J: Ultrasonic testing of materials 4th edition 1990, chapter 4.5.
For a full diagram of the k factors depending on ratio (b/a) see European Standard EN 126682, Annex A.
Best regards
Udo Schlengermann  
   Marc Ellyson
 Marc Ellyson
 00:27 Jun132009 Re: Near Field in Angle beam testing In Reply to Udo Schlengermann at 16:48 Jun122009 .
Udo,
Thank very much for the clarification. I've actually misread your equation. Clarification regarding the Ermolov eq. were also very helpfull. I'm actually a bit surprised that the software Beam tool 3, by Eclipse Scientific Products, based their near field caculations on this if the results doesn't match the more precise equations. There is certainly an explanation there!
This said, I'm wondering why you choose a=12mm, which is the element elevation rather than using a=24mm, which is the active aperture along the active axis?
From my understanding, using the elevation gives the near field for the passive axis instead of the active axis. However, using the active aperture (a=24mm) results with a N= 221.6mm, which is 4 times greater than your result. Hence is surely not the proper way, but I'm just trying to clarify all this.
Thanks again,
Marc  
   Udo Schlengermann Consultant,  Standards Consulting, Germany, Joined Nov 1998, ^{174}   14:47 Jun132009 Re: Near Field in Angle beam testing In Reply to Marc Ellyson at 00:27 Jun132009 .
Hello Marc,
more details for clarification:
The final statement in my last mail of course has to be:
Solutions 1 (R/D) and 3 (my own) are equal, and approximation 2 (Ermolov) shows deviation.
Sorry for the typing error.
The dimensions of the active aperture of the example are 2a x 2b = 24 mm x 12 mm.
Ratio (2b/2a) = (b/a) = 0.5.
The large side (2a) determines the near field length. Unfortunately the example uses (b/a) = 0.5, therefore (2a)/2 = 2b, which causes the confusion.
The equations for nearfield length N always use the dimension of the large side:
N ~ (2a)squared/4 lambda = 4 (a)squared/4 lambda = (a)squared/ lambda.
The same holds for a circular disk (diameter D, radius r):
N ~ (D)squared/4 lambda = (2r)squared/4 lambda = 4 (r)squared/ 4 lambda = (r)squared/ lambda.
Nearfield length and divergence angles (directivity) are mainly determined by the largest dimensions of the active aperture. Even if only a frame or rim is active it gives nearly the same values, but not the same energy, of course.
Best regards
Udo Schlengermann  
   Ed Ginzel R & D,  Materials Research Institute, Canada, Joined Nov 1998, ^{1219}   01:36 Jun142009 Re: Near Field in Angle beam testing In Reply to Udo Schlengermann at 14:47 Jun132009 .
Figure 2: Onaxis amplitude plot Figure 1: 3D View on left, Orthographic views on right Udo and Marc:
I have made several lab attempts to assess the near field using combinations of focal law apertures but I was not able to see clearly defined peaks as we have been accustomed to in circular disc radiators.
The equations for near field determination have been (and I think should be kept in mind to be) only approximations when dealing with ultrasonic probes. The concepts are not so easily transferred from light where we have monochromatic effects. When bandwidth is added the regions are generally poorly defined at the best of times.
I have recently had the great opportunity to use the CIVA Simulation software from CEA. This software allows for input of realistic parameters and the visual output is generally quite easy to grasp.
I simulated the probe Marc used with the 12x24mm aperture and 2.25MHz frequency. I configured the output pulse to have a 70% bandwidth and placed it directly on a steel (simulated) block.
The images I collected are uploaded in the Word doc submitted here. When a plot of amplitude versus distance is made there is a peak at the midpoint of the two lobes in the active aperture direction at 17mm depth. There is another (lower) peak at approximately 50mm. 17mm and 50mm match none of the options calculated by formulae.
Sorry, it is not a simple answer and I am a bit disappointed that the computations by analytical approach are not in accord with any of the equations we have been referring to in our simplified approach to the Near Field.  
   Udo Schlengermann Consultant,  Standards Consulting, Germany, Joined Nov 1998, ^{174}   12:07 Jun222009 Re: Near Field in Angle beam testing In Reply to Ed Ginzel at 01:36 Jun142009 .
Hallo Ed and Marc,
after a break to find my original documents of the 1970's I want to mail two image files published by me in these years and also in Krautkramer's book of 1990.
Ed, your calculations using the CIVA software are correct. The last peak of axial amplitude is at distance 1,041 (a)squared/lambda, which means 56 mm for the example. This is the last maximum on the axis defining the end of the nearfield. But for this transducer it is not the maximum peak. The absolute peak is at distance 0,36 (a)squared/lambda, which means 20 mm for the example.
The first attached diagram published first in 1974 shows all curves for rectangular transducers with aspect ratios between 0.2 (strip) and 1.0 (square).
The reason for the deviations from the curve for circular transducer is not the bandwidth of the pulse but the increasing unsymmetry of the rectangular transducer from a disk with decreasing ratio b/a.
Additionally I add a second diagram showing calculated profiles of a rectangular transducer of ratio b/a = 0.6, showing the higher side lobes parallel to the large side 2a of the tranducer and missing side lobes parallel to the smaller side 2b.
So I want to underline that my calculations done 35 years ago, when no personal computers were available and which use normalized functions, valid for all transducers with 2a/lambda > 10, totally are in accord with the modern 3Dcalculations (sound attenuation and electrical losses at the tranducer rim not taken into account).
For distances larger than 0.7(a)squared/lambda the beam structure is stable nearly independent of the bandwidth of the pulse, because all pulses which have more than half an oscillation generate the same beam structure there. And I do not know shorter pulses used in NDT.
I agree that the forum is not the place for an academic discussion, but please admit, that even in the good old days, accurate description of physics was possible.
Best regards
Udo Schlengermann  
   Marc Ellyson
 Marc Ellyson
 16:24 Jun262009 Re: Near Field in Angle beam testing In Reply to Udo Schlengermann at 12:07 Jun222009 .
Dear Ed and Udo,
Thank you so much for these very comprehensive answers. I have just ordered the Krautkramer book to get all the details regarding the isobar. It seems to be a huge missing piece in my understanding of UT.
Going beyond my initial question, I'd like to clarify another aspect of the Near Field in PA. As shown on Fig 4.26, the sound pressure varies significantly up to the last maximum peak defining the near field length.
It is known that with phased array the focusing capability is no longer effective beyond the near field. Hence, the focusing zone is limited within the near field zone where pressure variations cannot give a uniform ultrasonic response.
My question is, does the pressure variation of a PA probe can be compared with the one of square monolithic transducer? If yes, this would mean the inspected volume should be outside the near field zone and focusing should be avoided or at least set at the end of the zone of interest.
I'm wondering if square monolithic and square PA transducers give equivalent beam shape because each individual elements of a PA probe have its own near field. These individual near fields are obviously very short due to the size of the elements. When phasing is applied, we then consider a virtual aperture using the activated elements. This wider aperture produce a focused region as demonstrated by Ed and Udo. Does this fact make the near field region more uniform, not at all or just result in a fairly complex region to describe?  
   Vikram NDT Inspector,  Phased Array Specialist Mistras Group Inc., USA, Joined Jun 2009, ^{9}  Vikram NDT Inspector,  Phased Array Specialist Mistras Group Inc., USA, Joined Jun 2009 ^{9}
 01:43 Jun272009 Re: Near Field in Angle beam testing In Reply to Marc Ellyson at 16:24 Jun262009 .
Marc,
Just a note on that the phased array probes have element sizes comparable to the wavelength of the probe which means they are kind of like point sources which are radiating a spherical wavefront. So, individual elements will probably not have a near field similar to the single huge crystal.
Regards,
Vikram  
   Larry Mullins Consultant NxtNdT, USA, Joined Apr 2006, ^{7}   15:03 Jun272009 Re: Near Field in Angle beam testing In Reply to Vikram at 01:43 Jun272009 .
Vikram is not correct. The size of the aperture, not the element, provides the dimension of the "crystal" to be considered.  
   Vikram NDT Inspector,  Phased Array Specialist Mistras Group Inc., USA, Joined Jun 2009, ^{9}  Vikram NDT Inspector,  Phased Array Specialist Mistras Group Inc., USA, Joined Jun 2009 ^{9}
 01:38 Jun282009 Re: Near Field in Angle beam testing In Reply to Larry Mullins at 15:03 Jun272009 .
Larry,
I think you misunderstood my explanation. I was just talking about the individual elements on the phased array probe being comparable in size to the wavelength of the ultrasonic beam.
Vikram  
  NEW! The PragmaPro Instrument PlatformThe PragmaPro is based on a modular cartridge technology and supports various NDT
instrument modal ... ities such as UT, PAUT, ECT and many more. This new platform is
based on a machined, powdercoated aluminum frame for shockproofness, best sealing
qualities and maximum heat dissipation. This is practical to extend the outdoor
temperature range and/or to extend the power injected in the transducers. The
PragmaPro is aiming at a very wide range of applications, such as weld scanning,
corrosion mapping and composite testing. > Navic  Steerable Modular Automated ScannerThe Navic is a modular, motorized, steerable scanner designed to
carry multiple attachments
used ... in various scanning and inspection applications. The Navic is
capable of weld scanning
(girth welds and long seam welds), automated corrosion mapping,
and tank scanning.
> Immersion systemsScanMaster ultrasonic immersion systems are designed for high throughput, multi shift operation in a ... n industrial or lab environment. These fully integrated systems provide various scanning configurations and incorporate conventional and phased arrays technologies to support diverse applications, such as inspection of disks, bars, shafts, billets and plates.
All of ScanMaster immersion systems are built from high accuracy scanning frames allowing for scanning of complex parts and include a multichannel ultrasonic instrument with exceptional performance. The systems are approved by all major manufacturers for Cscan inspection of jet engine forged discs.
Together with a comprehensive set of software modules these flexible series of systems provide the customer with the best price performance solutions.
> 

We use technical and analytics cookies to ensure that we will give you the best experience of our website  More Info
s

