where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -
NDT.net Issue - 2016-03 - NEWS
NDT.net Issue: 2016-03
Publication: e-Journal of Nondestructive Testing (NDT) ISSN 1435-4934 (NDT.net Journal)

Condition monitoring system for wind turbine machinery using non-contact acoustic sensors

TWI Ltd (The Welding Institute)193, Great Abington, Cambridge, United Kingdom

Case Study

Operation and maintenance costs constitute an average of more than 30% of the total cost per kWh produced by a new wind turbine. Manufacturers are increasingly seeking to develop new maintenance approaches to bring down these costs.

TWI, in partnership with RTS International, worked to support this aim through the CM Project, a research programme funded by Innovate UK, within the competition ‘Emerging Energy Technologies’.

The project sought to establish the feasibility of using a non-contact acoustic pressure sensor to monitor the condition of machinery in an onshore wind turbine. This was achieved through experimental field trials in a 2MW turbine lasting over a month.

Figure 1. Wind farm location for experimental trials

Acoustic sound and vibration monitoring

Vibrations from all the rotating components within the nacelle were monitored through the airborne noise generated by the surface vibrations of the machinery.

Figure 2. Sensing instrumentation

The noise was detected by acoustic pressure sensors (microphones) mounted at the nacelle inner surface.

Unlike contact sensors, which cover only the small portion of their contact area, these microphone sensors are able to monitor up to 75% of the noise emitted from the machine surfaces. The developed non-contact sensor array consists of a group of five acoustic pressure sensors arranged in a manner which allow its easy installation and set-up.

Field trials

Figure 3. Sensor array installed in the wind turbine nacelle

To determine the feasibility of the non-contact technique, acoustic sound and vibration monitoring were carried out during the UK-based turbine’s normal operation. An array of five acoustic pressure sensors and two accelerometers was installed. In addition to acoustic sound and vibration data, parametric data, ie wind speed and power output, were obtained for correlation with the acquired data, as shown in Figure 4.

Figure 4. Root mean square of the acoustic signals versus power

Contact us

For further information about the project, please visit the project website: www.cmdrive.co.uk.

If you would like further details, please contact us.

Feedback: ()

More from "TWI Ltd (The Welding Institute)" (5 of 194)
2020-06Defect Detection using Power Spectrum of Torsional Waves in Guided-Wave Inspection of Pipelines
2020-06Enhancement of Ultrasonic Guided Wave Signals Using a Split-Spectrum Processing Method
2019-12Non-Destructive Testing of Hybrid Composite Structures NEWS
2019-11TWI Tests Inspection Techniques at Geothermal Field Site NEWS
2019-11External Thread Crack Detection Using Eddy Current Testing NEWS
... All 194 Details >
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
this is debug window