where expertise comes together - since 1996

Web's Largest Portal of Nondestructive Testing (NDT)
Open Access Database (Conference Proceedings, Articles, News), Exhibition, Forum, Network


NDT.net Issue - 2008-08 - NEWS

Effects of Heat Treatment Procedures on the Cold Cracking Behaviour of High Strength Steel Welds


BAM Federal Institute for Materials Research and Testing1239, Berlin [Germany]
Publication
NEWS  
NDT.net Journal
Issue: 2008-08
Most of the research on Hydrogen Assisted Cold Cracking (HACC) in high strength steel welds conducted over the last several decades has focused on single-pass welds, especially considering materials with yield strengths of about 700 MPa. Most of the weld procedure specifications, guidelines and standards targeted at HACC avoidance recommend preheating procedures. Application of such regulations to multi-pass welds of modern high strength structural steels with yield strengths of up to 1300 MPa is very limited. Actually there is no decent knowledge and only an empirical experience how to weld such joints in real components subjected to a respective shrinkage restraint. Consequently, an increasing number of failure cases, partly of catastrophic dimensions, have been reported in the present decade.

The present contribution is targeted to close this knowledge gap by elucidating the principal effects of various inhomogeneous Hydrogen Removal Heat Treatment (HRHT) procedures on the HACC avoidance in high strength structural steel welds. As a typical representative in the upper yield strength range of this category of materials, a S 1100 QL weld using UNION X96 filler wire has been chosen. The results were achieved by indirectly coupled thermal, structural and hydrogen diffusion finite element modeling of HACC in single-layer and five-layer welded V-bevelled butt joints with plate thicknesses of 20.0 mm and 12.0 mm, respectively, at realistic restraint conditions and have been partly been confirmed by respective Instrumented Restraint Cracking (IRC) Tests. The numerical simulations are based on the interacting three local effects on HACC, i.e. local microstructure, local mechanical load and local hydrogen concentration. HACC has thus been regarded as a cracking phenomenon occurring, if the local mechanical load in a specific microstructure exceeds the limit for the respective hydrogen concentration. The various heat treatments proposed in literature, guidelines, specifications and standards, i.e. sole preheating, controlled interpass temperature, combined preheating and controlled interpass temperature application as well as postheating have been investigated with respect to their effects on the mechanical loading of the butt joints in terms of stresses and strains as well as on the hydrogen removal capabilities. As a particular item, a numerical model for Hydrogen Assisted Stress Corrosion Cracking (HASCC) has been developed further that it can be applied to HACC, in order to study, how such heat treatments influence crack initiation and propagation.

By such modeling procedures as the most important results have been achieved:
    1. Further development and adaptation of a model for hydrogen assisted cracking to HACC and usage validation of the model for this material.
    2. Evaluation of the effects of pre- and postheating as well as interpass temperature on the stress-strain distribution in multi-pass welds.
    3. Clarification of the difference between single- and multi-pass welding with respect to stress-strain and hydrogen distribution as well as to HACC initiation and propagation.
    4. Establishment of practical hydrogen removal heat treatment diagrams.
    5. Assessment of the effects of the amount of hydrogen picked up during welding on crack location and propagation.

(Volltext, PDF, 8.9 MB)

BAM-Dissertationsreihe Band 36
M. Eng. Pornwasa Wongpanya
Effects of Heat Treatment Procedures on the Cold Cracking Behaviour of High Strength Steel Welds
2008, ISBN 978-3-9812072-7-9

Kontakt:
Prof. Dr.-Ing. Michael Rethmeier
Fachgruppe V.5 Sicherheit gefügter Bauteile
Telefon: +49 30 8104-1550, E-Mail: michael.rethmeier@bam.de

More of BAM Federal Institute for Materials Research and Testing published in NDT.net
2018-08-01: Quantitative comparison of different non-destructive techniques for the detection of artificial defects in fiber reinforced composites
2018-08-01: An Assessment of Bulk and Surface Residual Stress in Selective Laser Melted Inconel 718
2018-08-01: Current Developments in Digital Radiography and Computed Tomography from nm to macro scale
2018-08-01: Laser Speckle Photometry for Stress Measuring at Industrial Components
2018-08-01: Visibility of Image Quality Indicators (IQI) by Human Observers in Digital Radiography in Dependence on Measured MTFs and Noise Power Spectra
2018-08-01: New technologies for air-coupled ultrasonic transducers
2018-08-01: Modeling of 3D Electro-Mechanical Wave Propagation in 1-3 Piezocomposite based Ultrasonic Sensors: Simulation and Experimental Comparison
2018-08-01: X-ray detector for maximum efficiency in the energy range above 400keV - are 101dB worth the additional effort?
2018-08-01: Analysis of Guided Wave Propagation and Mode-Damage Interaction in an Aluminium-CFRP Hybrid Plate
2018-08-01: Lock-in Thermography using High-Power Laser Sources
All 1196 Articles & News of BAM Federal Institute for Materials Research and Testing in NDT.net


© NDT.net - The Web's Largest Portal of Nondestructive Testing (NDT) ISSN 1435-4934

Open Access Database, |Conference Proceedings| |Articles| |News| |Exhibition| |Forum| |Professional Network|